Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3731-3736    https://doi.org/10.11896/j.issn.1005-023X.2018.21.008
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
二元及三元过渡金属氧化物的制备及其电化学应用研究进展
张玮倩1, 许秀玲1, 2, 周国伟1
1 齐鲁工业大学(山东省科学院)化学与制药工程学院,山东省高校轻工精细化学品重点实验室,济南 250353;
2 潍坊科技学院化工与环境学院,潍坊 262700
Progress on the Preparation and Application in Electrochemistry of Binary and Ternary Transition Metal Oxides
ZHANG Weiqian1, XU Xiuling1, 2, ZHOU Guowei1
1 Key Laboratory of Fine Chemicals in Universities of Shandong,School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences),Jinan 250353;
2 School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700
下载:  全 文 ( PDF ) ( 1634KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二元及三元过渡金属氧化物由于其优异的物理和化学特性,在电化学领域得到了广泛的应用。本文主要介绍了不同元素组成的二元及三元过渡金属氧化物,以及通过不同制备方法得到的空心球状、管状、片状、立方体、棒状、针状、伞形等多种不同形貌的二元及三元过渡金属氧化物;总结了二元及三元过渡金属氧化物在超级电容器、锂离子电池和传感器领域中表现出的优异性能;最后对二元及三元过渡金属氧化物的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张玮倩
许秀玲
周国伟
关键词:  过渡金属氧化物  电化学  电子材料    
Abstract: Binary and ternary transition metal oxides have excellent physical and chemical properties, which have been widely used in the field of electrochemistry. In this paper, the binary and ternary transition metal oxides with different elements are introduced. Different morphologies of the binary and ternary transition metal oxides such like spherical, tubular, lamellar, cube, rod, needle and umbrella are obtained by different preparation methods. The excellent performances of binary and ternary transition metal oxides in the fields of supercapacitors, lithium batteries and sensors are summarized. Finally, the application in the future are prospected.
Key words:  transition metal oxides    electrochemistry    electronic materials
               出版日期:  2018-11-10      发布日期:  2018-11-21
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51572134; 51503108)
作者简介:  张玮倩:女,1994年生,硕士研究生,研究方向为纳米材料化学 E-mail:wqzhang_@outlook.com;周国伟:通信作者,男,1965年生,教授,主要研究方向为纳米材料的可控制备及应用 Tel:0531-89631696 E-mail:gwzhou@qlu.edu.cn
引用本文:    
张玮倩, 许秀玲, 周国伟. 二元及三元过渡金属氧化物的制备及其电化学应用研究进展[J]. 材料导报, 2018, 32(21): 3731-3736.
ZHANG Weiqian, XU Xiuling, ZHOU Guowei. Progress on the Preparation and Application in Electrochemistry of Binary and Ternary Transition Metal Oxides. Materials Reports, 2018, 32(21): 3731-3736.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.008  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3731
1 Yuan C Z, Wu H B, Xie Y, et al.Mixed transition-metal oxides: Design, synthesis, and energy-related applications[J].Angewandte Chemie International Edition,2014,53(6):1488.
2 Xie Z, Xu W, Cui X, et al.Recent progress in metal-organic frameworks and their derived nanostructures for energy and environmental applications[J].ChemSusChem,2017,10(8):1645.
3 Vijayakumar S, Nagamuthu S, Ryu K S.CuCo2O4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications[J].Electrochimica Acta,2017,238:99.
4 Zhu Y R, Ji X B, Yin R M, et al.Nanorod-assembled NiCo2O4 hollow microspheres assisted by an ionic liquid as advanced electrode materials for supercapacitors[J].RSC Advances,2017,7(18):11123.
5 Zhao Y, Ma X Y, Xu P Y, et al.Elemental mercury removal from flue gas by CoFe2O4 catalyzed peroxymonosulfate[J].Journal of Hazardous Materials,2017,341:228.
6 Sambandam B, Soundharrajan V, Song J J, et al.Zn3V2O8 porous morphology derived through a facile and green approach as an excellent anode for high-energy lithium ion batteries[J].Chemical Engineering Journal,2017,328:454.
7 Liu Z Q, Cheng H, Li N, et al.ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts[J].Advanced Materials,2016,28(19):3777.
8 Zhang X, Zhou Y P, Luo B, et al.Microwave-assisted synthesis of NiCo2O4, double-shelled hollow spheres for high-performance so-dium ion batteries[J].Nano-Micro Letters,2018,10(1):13.
9 Hao P, Zhao Z H, Li L Y, et al.The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density[J].Nanoscale,2015,7(34):14401.
10 Li T F, Lv Y J, Su J H, et al.Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofbers for high-performance oxygen evolution reaction[J].Advanced Science,2017,4(11):1700226.
11 Liu Q B, Zhang S J, Liao J Y, et al.CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production[J].Journal of Power Sources,2017,355:191.
12 Zhu B G, Tang S C, Vongehr S, et al.FeCo2O4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors[J].Chemical Communications,2016,52(12):2624.
13 Hao X D, Wang B, Ma C, et al.Mixed potential type sensor based on stabilized zirconia and Co1-xZnxFe2O4 sensing electrode for detection of acetone[J].Sensors & Actuators B: Chemical,2018,255:1173.
14 Chen S M, Yang G, Jia Y, et al.Three-dimensional NiCo2O4@NiWO4 core-shell nanowire arrays for high performance supercapacitors[J].Journal of Materials Chemistry A,2017,5(3):1028.
15 Wu X Y, Li S M, Wang B, et al.Controllable synthesis of micro/nano-structured MnCo2O4 with multiporous core-shell architectures as high-performance anode materials for lithium-ion batteries[J].New Journal of Chemistry,2015,39(11):8416.
16 Yu C Y, Park J S, Jung H G, et al.NaCrO2 cathode for high rate sodium-ion batteries[J].Energy & Environmental Science,2015,8(7):2019.
17 Zhou L, Zhao D Y, Lou X W.Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries[J].Advanced Materials,2012,24(6):745.
18 Zhang G Q, Le Y, Wu H B, et al.Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries[J].Advanced Materials,2012,24(34):4609.
19 Jiang Y Z, Tang C G, Zhang H, et al.Hierarchical walnut-like Ni0.5Co0.5O hollow nanospheres comprised of ultrathin nanosheets for advanced energy storage devices[J].Journal of Materials Chemistry A,2017,5(12):5781.
20 Ma F X, Yu L, Xu C Y, et al.Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties[J].Energy & Environmental Science,2016,9(3):862.
21 Jiang X X, Zhang S H, Ren F, et al.Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer[J].ACS Nano,2017,11(6):5633.
22 Kaverlavani S K, Moosavifard S E, Bakouei A.Self-templated synthesis of uniform nanoporous CuCo2O4 double shelled hollow microspheres for high-performance asymmetric supercapacitors[J].Chemical Communications,2017,53(6):1052.
23 Shi X, Liu Z H, Zheng Y J, et al.Controllable synthesis and electrochemical properties of MnCo2O4 nanorods and microcubes[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,522:525.
24 Zhang D F, Zhang G Z, Zhang L.Multi-shelled FeCo2O4 hollow porous microspheres/CCFs magnetic hybrid and its dual-functional catalytic performance[J].Chemical Engineering Journal,2017,330(15):792.
25 Luo D, Deng Y P, Wang X L, et al.Tuning shell numbers of transition metal oxide hollow microspheres towards durable and superior lithium storage[J].ACS Nano,2017,11(11):11521.
26 Chodankar N R, Dubal D P, Kwon Y, et al.Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor[J].NPG Asia Materials,2017,9(8):e419.
27 Sun W, Wang Y, Wu H T, et al.3D free-standing hierarchical CuCo2O4 nanowire cathodes for rechargeable lithium-oxygen batteries[J].Chemical Communications,2017,53(62):8711.
28 He P G, Huang Q, Huang B Y, et al.Controllable synthesis of Ni-Co-Mn multicomponent metal oxides with various morphologies for high-performance flexible supercapacitors[J].RSC Advances,2017,7(39):24353.
29 Wu C, Cai J J, Zhu Y, et al.Hybrid reduced graphene oxide nanosheet supported Mn-Ni-Co ternary oxides for aqueous asymmetric supercapacitors[J].ACS Applied Materials & Interfaces,2017,9(22):19114.
30 Wang C H, Levin A A, Karel J, et al.Size-dependent structural and magnetic properties of chemically synthesized Co-Ni-Ga nanoparticles[J].Nano Research,2017,10(10):3421.
31 Chen H X, Zhang Q B, Han X, et al.3D hierarchical porous zinc-nickel-cobalt oxides nanosheets grown on Ni foam as binder-free electrodes for electrochemical energy storage[J].Journal of Materials Chemistry A,2015,3(47):24022.
32 Wu C, Cai J J, Zhang Q B, et al.Hierarchical mesoporous zinc-nic-kel-cobalt ternary oxide nanowire arrays on nickel foam as high-performance electrodes for supercapacitors[J].ACS Applied Materials & Interfaces,2015,7(48):26512.
33 Kaverlavania S K, Moosavifard S E, Bakouei A.Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors[J].Journal of Materials Chemistry A,2017,5(27):14301.
34 Chen W, Xia C, Alshareef H N.One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors[J].ACS Nano,2014,8(9):9531.
35 Zhu Zhaoqiang, Du Weimin, Guo Wei, et al.Research progress of preparation and application of transition metal ternary compounds in supercapacitors[J].Chinese Journal of Applied Chemistry,2016,33(3):267(in Chinese).
朱兆强,杜卫民,郭威,等.过渡金属三元化合物的制备及其应用于超级电容器的研究进展[J].应用化学,2016,33(3):267.
36 Zhao J, Li C, Zhang Q, et al.All-solid-state, light-weight, flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials[J].Journal of Materials Chemistry A,2017,5:6928.
37 Maitra A, Das A K, Bera R, et al.An approach to fabricate PDMS encapsulated all-solid-state advanced asymmetric supercapacitor device with vertically aligned hierarchical Zn-Fe-Co ternary oxide nanowire and nitrogen doped grapheme nanosheet for high power device applications[J].ACS Applied Materials & Interfaces,2017,9(7):5947.
38 Li Z H, Zhao T P, Zhan X Y, et al.High capacity three-dimensional ordered macroporous CoFe2O4, as anode material for lithium ion batteries[J].Electrochimica Acta,2010,55(15):4594.
39 Ji L W, Lin Z, Alcoutlabi M, et al.Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J].Energy & Environmental Science,2011,4(8):2682.
40 Lu H R, Hagberg J, Lindbergh G, et al.Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries[J].Nano Energy,2017,39:140.
41 Yuvaraj S, Selvan R K, Yun S L.An overview of AB2O4- and A2BO4-structured negative electrodes for advanced Li-ion batteries[J].RSC Advances,2016,6(26):21448.
42 He Y S, Muhetaer A, Li J M, et al.Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries[J].Advanced Energy Materials,2017,7(21):1700950.
43 Chai H, Wang Y C, Fang Y C, et al.Low-cost synthesis of hierarchical Co3V2O8, microspheres as high-performance anode materials for lithium-ion batteries[J].Chemical Engineering Journal,2017,326(15):587.
44 Li Z, Huang X X, Hu J B et al. Synthesis and electrochemical performance of three-dimensionally ordered macroporous CoCr2O4 as an anode material for lithium ion batteries[J].Electrochimica Acta,2017,247:1.
45 Yuhashi N, Tomiyama M, Okuda J, et al.Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase[J].Biosensors & Bioelectronics,2005,20(10):2145.
46 Zhang E H, Xie Y, Ci S Q, et al.Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell[J].Biosensors & Bioelectronics,2016,81:46.
47 Kimmel D W, Leblanc G, Meschievitz M E, et al.Electrochemical sensors and biosensors[J].Analytical Chemistry,2012,84(2):685.
48 Cui S Q, Li L, Ding Y P, et al.Uniform ordered mesoporous ZnCo2O4 nanospheres for super-sensitive enzyme-free H2O2 biosensing and glucose biofuel cell applications[J].Nano Research,2017,10(7):2482.
49 Lin Z D, Xu M Y, Fu P, et al.Crystal plane control of 3D iron molybdate and the facet effect on gas sensing performances[J].Sensors & Actuators B: Chemical,2017,254:755.
50 Zhang J J, Mei Q W, Ding Y P, et al.Ordered mesoporous NiCo2O4 nanospheres as a novel electrocatalyst platform for 1-naphthol and 2-naphthol individual sensing application[J].ACS Applied Materials & Interfaces,2017,9(35):29771.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[5] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[10] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[11] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[12] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[13] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[14] 刘敏敏, 蔡超, 张志杰, 刘睿. 纳米碳材料负载过渡金属氧化物用作超级电容器电极材料[J]. 材料导报, 2019, 33(1): 103-109.
[15] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed