Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3726-3730    https://doi.org/10.11896/j.issn.1005-023X.2018.21.007
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
孤对电子对碲热电传输性能的影响
李蓉1, 陈少平1, 樊文浩2, 陈彦佐1, 徐礼彬1, 王文先1, 吴玉程1
1 太原理工大学材料科学与工程学院,太原 030024;
2 太原理工大学物理与光电工程学院,太原 030024
Effect of Lone-pair Electron on Thermoelectric Transmission Performance of Tellurium
LI Rong1, CHEN Shaoping1, FAN Wenhao2, CHEN Yanzuo1, XU Libin1, WANG Wenxian1, WU Yucheng1
1 College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024;
2 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024
下载:  全 文 ( PDF ) ( 1699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碲(Te)是一种良好的单质热电(TE)材料,具有很高的Seebeck系数和载流子迁移率,以及非常低的热导率。本工作采用热压法制备了Te以及Sb掺杂的Te多晶,采用垂直布里奇曼下降法制备了Te晶体,并对得到的晶体进行热电性能测试研究。结果表明:Te具有高的Seebeck系数以及电导率,Sb掺杂有效提高了Te的热电性能,由布里奇曼法制备的Te晶体的电导率表现出明显的各向异性。这主要归因于Te具有简并的能带、阶梯状的态密度分布和超大的声子散射相。然而这些有益于热电传输的特征又都源自于Te晶格中的孤对电子。本工作展示了孤对电子与各热电传输性能之间的联系,为热电参数解耦提供了一种新的方法,同时也为寻找优异的热电材料提供了思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李蓉
陈少平
樊文浩
陈彦佐
徐礼彬
王文先
吴玉程
关键词:    孤对电子  热电传输  锑掺杂  垂直布里奇曼下降法  各向异性    
Abstract: Tellurium is an excellent thermoelectric (TE) material, has very high Seebeck coefficient, mobility and extra low thermal conductivity. In this paper, polycrystalline samples of pure Te and SbxTe1-x were prepared using melt-alloying and hot-pressing techniques, and Te crystals were prepared by vertical Bridgman-Stockbarge method. Then thermoelectric properties of the obtained crystals were studied. The results show that Te has a high Seebeck coefficient and conductivity, and Sb doping effectively improves the thermoelectric properties of Te, the conductivity of Te crystals prepared by vertical Bridgman-Stockbarge method shows obvious anisotropy. These results are mainly attributed to degenerate band in valance band, step-like DOS distribution near Fermi level and large phonon scattering phase. This effect can be attributed to the lone-pair electrons in Te lattice, which enable these characters benefiting TE transport properties. This study illustrates the lone-pair electrons of Te are origins of these properties by decoupling σ, α and κ, which also offer a new character to look for good TE materials.
Key words:  tellurium    lone-pair electrons    thermoelectric transmission    antimony doping    vertical Bridgman-Stockbarge method    anisotropy
               出版日期:  2018-11-10      发布日期:  2018-11-21
ZTFLH:  TB34  
作者简介:  李蓉:女,1994年生,硕士研究生,研究方向为半导体热电材料 E-mail:18334707086@163.com;陈少平:通信作者,女,1977年生,博士,教授,从事半导体热电材料研究 E-mail:sxchenshaoping@163.com
引用本文:    
李蓉, 陈少平, 樊文浩, 陈彦佐, 徐礼彬, 王文先, 吴玉程. 孤对电子对碲热电传输性能的影响[J]. 材料导报, 2018, 32(21): 3726-3730.
LI Rong, CHEN Shaoping, FAN Wenhao, CHEN Yanzuo, XU Libin, WANG Wenxian, WU Yucheng. Effect of Lone-pair Electron on Thermoelectric Transmission Performance of Tellurium. Materials Reports, 2018, 32(21): 3726-3730.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.007  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3726
1 Shi X, Chen L, Uher C.Recent advances in high-performance bulk thermoelectric materials[J].International Materials Reviews,2016,61(6):1.
2 Pei Y, Wang H, Snyder G J.Band engineering of thermoelectric materials[J].Advanced Materials,2012,24(46):6125.
3 Goldsmid H J.Introduction to thermoelectricity[M].Switzerland AG: Springer Nature,2010.
4 Snyder G J, Toberer E S.Complex thermoelectric materials[J].Nature Materials,2008,7(2):105.
5 Dresselhaus M S, Chen G M, Tang Y, et al.New directions for low-dimensional thermoelectric materials[J].Advanced Materials,2007,19(8):1043.
6 Fan W, Chen S, Zeng B, et al.Enhancing the zT value of Bi-doped Mg2Si0.6Sn0.4 materials through reduction of bipolar thermal conductivity[J].ACS Applied Materials & Interfaces,2017,9(34):28635.
7 Chen S, Zhang X, Fan W, et al.One-step low temperature reactive consolidation of high purity nanocrystalline Mg2Si[J].Journal of Alloys & Compounds,2015,625(3):251.
8 Cheng M, Chen S, Du Z, et al.Improvement in thermoelectric performance of In6Se7 by substitution of Sn for In[J].Physica Status Solidi,2016,213(8):2176.
9 Pei Y, Shi X, Lalonde A, et al.Convergence of electronic bands for high performance bulk thermoelectrics[J].Nature,2011,473(7345):66.
10 Liu X, Zhu T, Wang H, et al.Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence[J].Advanced Energy Materials,2014,3(9):1238.
11 Balandin A A.Thermal properties of graphene and nanostructured carbon materials[J].Nature Materials,2011,10(8):569.
12 Boukai A I, Bunimovich Y, Tahir-Kheli J, et al.Silicon nanowires as efficient thermoelectric materials[J].Nature,2008,451(7175):168.
13 Biswas K, He J, Blum I D, et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures[J].Nature,2012,489(7416):414.
14 Hicks L D, Harman T C, Sun X, et al.Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit[J].Physica B: Condensed Matter,2002,281(16):450.
15 Harman T C, Spears D L, Walsh M P.PbTe/Te superlattice structures with enhanced thermoelectric figures of merit[J].Journal of Electronic Materials,1999,28(1):21.
16 Harman T C, Taylor P J, Spears D L, et al.Thermoelectric quantum-dot superlattices with high ZT[J].Journal of Electronic Mate-rials,2000,29(1):L1.
17 Harman T C, Walsh M P, Laforge B E, et al.Nanostructured thermoelectric materials[J].Journal of Electronic Materials,2005,34(5):L19.
18 Harman T C, Taylor P J, Walsh M P, et al.Quantum dot superlattice thermoelectric materials and devices[J].Science,2002,297(5590):2229.
19 Peng H, Kioussis N, Snyder G J.Elemental tellurium as a chiral p-type thermoelectric material[J].Physical Review B,2014,89(19):195206.
20 Peng H, Kioussis N, Stewart D A.Anisotropic lattice thermal conductivity in chiral tellurium from first principles[J].Applied Physics Letters,2015,107(25):373.
21 Lin S, Li W, Chen Z, et al.Tellurium as a high-performance elemental thermoelectric[J].Nature Communications,2016,7:10287.
22 Borup K A, Toberer E S, Zoltan L D, et al.Measurement of the electrical resistivity and Hall coefficient at high temperatures[J].Review of Scientific Instruments,2012,83(12):123902.
23 Iwanaga S, Toberer E S, Lalonde A, et al.A high temperature apparatus for measurement of the Seebeck coefficient[J].Review of Scientific Instruments,2011,82(6):516.
24 O'Mara W, Herring R B, Hunt L P. Handbook of Semiconductor Silicon Technology[M].Noyes Publications,1990.
25 Poudel B, Hao Q, Ma Y, et al.High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J].Science,2008,320(5876):634.
[1] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[2] 焦慧彬, 陈善达, 陈送义, 陈康华. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响[J]. 材料导报, 2018, 32(6): 937-942.
[3] 罗炳威,刘大博,罗飞,田野,陈冬生,周海涛. 两类典型的低温应用红外探测材料研究[J]. 《材料导报》期刊社, 2018, 32(3): 398-404.
[4] 马仕达, 汤爱涛, 彭鹏, 张根, 佘加, 黄光胜, 潘复生. Mg-9Al-1Mn合金热轧板材组织与性能[J]. 材料导报, 2018, 32(24): 4286-4291.
[5] 何霄,邹宇新,邱佳佳,杨玺,李绍元,马文会. 交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 167-170.
[6] 李建雄, 贾红玉, 陈纯锴, 赵晓明. 基于各向异性织物的电磁屏蔽性能仿真计算[J]. 材料导报, 2018, 32(18): 3235-3238.
[7] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[8] 白庆伟,麻永林,邢淑清,冯艳飞,鲍鑫宇,陈重毅. 表面脉冲电磁场处理下7A04铝合金凝固组织演变[J]. 《材料导报》期刊社, 2018, 32(12): 2021-2027.
[9] 臧剑锋, 童磊, 叶镭, 喻研. 二维原子晶体材料中的各向异性研究概述*[J]. CLDB, 2017, 31(9): 15-25.
[10] 李颖颖, 万隆, 王俊沙, 徐俊杰, 刘莹莹, 李荣辉. 温度对铁基预合金粉腐蚀泡沫化人造金刚石微粉的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 113-116.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed