Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 398-404    https://doi.org/10.11896/j.issn.1005-023X.2018.03.009
     材料综述 |
两类典型的低温应用红外探测材料研究
罗炳威,刘大博,罗飞,田野,陈冬生,周海涛
北京航空材料研究院,北京 100095
Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review
Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU
Beijing Institute of Aeronautical Materials, Beijing 100095
下载:  全 文 ( PDF ) ( 1392KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

红外探测器件是现代军用武器装备目标识别的核心构件,而红外探测材料的性能将直接影响器件的性能水平。综述了两类典型的低温应用红外探测材料研究进展,以红外探测材料研究和应用的尺度为分类标准,分别对微米尺度的窄带隙直接半导体碲镉汞和基于量子效应的四种低维材料进行了介绍,并指出了当前红外探测材料研究存在的问题和发展的方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗炳威
刘大博
罗飞
田野
陈冬生
周海涛
关键词:  碲镉汞  红外探测  低温    
Abstract: 

Infrared detector device is the core parts of the modern military weapons target recognition, and the performance of the infrared detection material will directly decide the performance of the device level. The research progress of two typical materials of infrared detection applied under low temperature is reviewed. Based on the classification standard of the scale of the infrared material, the direct semiconductor of HgCdTe with narrow bandgap and the infrared material based on the quantum effects are both introduced. Meanwhile, the current problems existing in the research of infrared detection materials and the future development direction are proposed as well.

Key words:  HgCdTe    infrared detection    low temperature
               出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51602299);国家自然科学基金(51302255)
作者简介:  罗炳威:男,1986年生,博士,工程师,从事纳米光电材料与器件的研究 E-mail: luobingwei@126.com
引用本文:    
罗炳威,刘大博,罗飞,田野,陈冬生,周海涛. 两类典型的低温应用红外探测材料研究[J]. 《材料导报》期刊社, 2018, 32(3): 398-404.
Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review. Materials Reports, 2018, 32(3): 398-404.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.009  或          http://www.mater-rep.com/CN/Y2018/V32/I3/398
  
  
  
  
  
  
  
1 Chen C S, Liu R T, Liu S H . New development of infrared detector[J]. Journal of Atmospheric and Environmental Optics, 2013,8(1):1(in Chinese).
1 陈长水, 刘荣挺, 刘颂豪 . 红外探测器的最新进展[J]. 大气与环境光学学报, 2013,8(1):1.
2 Vishnyakov A V, Stuchinsky V A, Brunev D V , et al. Analysis of charge-carrier diffusion in the photosensing films of HgCdTe infrared focal plane array photodetectors[J]. Journal of Applied Physics, 2015,118(12):124508.
3 Gong H M, Liu D F . Developments and trends in spaceborne infrared detectors[J]. Infrared and Laser Engineering, 2008,37(1):18(in Chinese).
3 龚海梅, 刘大福 . 航天红外探测器的发展现状与进展[J]. 红外与激光工程, 2008,37(1):18.
4 Dong X L, Mao C L, Yao C H , et al. Progress of research on the pyroelectric ceramic materials for uncooled infrared detectors[J]. Infrared and Laser Engineering, 2008,37(1):37(in Chinese).
4 董显林, 毛朝梁, 姚春华 , 等. 非制冷红外探测器用热释电陶瓷材料研究进展[J]. 红外与激光工程, 2008,37(1):37.
5 Rogalski A, Antoszewski J, Faraone L , et al. Third-generation infrared photodetector arrays[J]. Journal of Applied Physics, 2009,105(9):091101.
6 Rogalski A . Toward third generation HgCdTe infrared detectors[J]. Journal of Alloys and Compounds, 2004,371(1):53.
7 Wang G W, Xu Y Q, Niu Z C . Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Challenges and solutions[J]. Scientia Sinica Physica Mechainica & Astronomica, 2014,44(4):368(in Chinese).
7 王国伟, 徐应强, 牛智川 . 新型低维结构锑化物红外探测器的研究与挑战[J]. 中国科学:物理学力学天文学, 2014,44(4):368.
8 Kinch M A . HgCdTe: Recent trends in the ultimate IR semiconductor[J]. Journal of Electronic Materials, 2010,39(7):1043.
9 Guo R P, Li J, Sun B S . New development of foreign infrared detector material technology[J]. Ordnance Material Science and Enginee-ring, 2009,32(3):96(in Chinese).
9 郭瑞萍, 李静, 孙葆森 . 国外红外探测器材料技术新进展[J]. 兵器材料科学与工程, 2009,32(3):96.
10 Piotrowski J, Gawron W . Ultimate performance of infrared photodetectors and figure of merit of detector material[J]. Infrared Physics & Technology, 1997,38(2):63.
11 Colombo L, Chang R R, Chang C J , et al. Growth of Hg-based alloys by the traveling heater method[J]. Journal of Vacuum Science Technology, 1988,A6(4):2795.
12 Norton P . HgCdTe infrared detectors[J]. Opto-Electronics Review, 2002,10(3):159.
13 Radhakrishnan J K, Sitharaman S, Gupta S C . Surface morphology of Hg0.8Cd0.2Te epilayers grown by LPE using horizontal slider[J]. Applied Surface Science, 2003,207:33.
14 Wilson J A, Patten E A, Chapman G R , et al. Integrated two-color detection for advanced focal plane array (FPA) applications[J]. Proceeding of SPIE, 1994,2274:117.
15 Rais M H, Musca C A, Dell J M , et al. HgCdTe photovoltaic detectors fabricated using a new junction formation technology[J]. Microelectronics Journal, 2000,31(7):545.
16 Bevan M J, Chen M C, Shih H D . High-quality p-type Hg1-xCdxTe prepared by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1995,67(23):3450.
17 Peterson J M, Franklin J A, Readdy M , et al. High-quality large-area MBE HgCdTe/Si[J]. Journal of Electronic Materials, 2006,35(6):1283.
18 Bornfreund R, Rosbeck J P, Thai Y N , et al. High-performance LWIR MBE-grown HgCdTe/Si focal plane arrays[J]. Journal of Electronic Materials, 2007,36(8):1085.
19 Radford W A, Patten E A, King D F , et al. Third generation FPA development status at raytheon vision systems[J]. Proceeding of SPIE, 2005,5783:331.
20 Smith E P G, Patten E A, Goetz P M , et al. Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors[J]. Journal of Electronic Materials, 2006,35(6):1145.
21 Simingalam S, Vanmil B L, Chen Y P , et al. Development and fabrication of extended short wavelength infrared HgCdTe sensors grown on CdTe/Si substrates by molecular beam epitaxy[J]. Solid-State Electronics, 2014,101:90.
22 Bommena R, Ketharanathan S, Wijewarnasuriya P S , et al. High-performance MWIR HgCdTe on Si substrate focal plane array deve-lopment[J]. Journal of Electronic Materials, 2015,44(9):3151.
23 Selvig E, Tonheim C R, Kongshaug K O , et al. Defects in HgTe grown by molecular beam epitaxy on (211)B-oriented CdZnTe substrates[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 2007,25(6):1776.
24 Selvig E, Tonheim C R, Kongshaug K O , et al. Defects in CdHgTe grown by molecular beam epitaxy on (211)B-oriented CdZnTe substrates[J]. Journal of Vacuum Science & Technology B, 2008,26(2):525.
25 Selvig E, Tonheim C R, Lorentzen T , et al. Defects in HgTe and CdHgTe grown by molecular beam epitaxy[J]. Journal of Electronic Materials, 2008,37(9):1444.
26 Haakenaasen R, Selvig E, Tonheim C R , et al. HgCdTe research at FFI: Molecular beam epitaxy growth and characterization[J]. Journal of Electronic Materials, 2010,39(7):893.
27 Haakenaasen R, Steen H, Selvig E , et al. Imaging photovoltaic infrared CdHgTe detectors[J]. Physica Scripta, 2006,2006(T126):31.
28 Haakenaasen R, Steen H, Lorentzen T , et al. Planar n-on-p ion milled mid-wavelength and long-wavelength infrared diodes on molecular beam epitaxy vacancy-doped CdHgTe on CdZnTe[J]. Journal of Electronic Materials, 2002,31(7):710.
29 Haakenaasen R, Steen H, Selvig E , et al. Imaging one-dimensional and two-dimensional planar photodiode detectors fabricated by ion milling molecular beam epitaxy CdHgTe[J]. Journal of Electronic Materials, 2005,34(6):922.
30 Chen L, Fu X L, Wang W Q , et al. Progress on HgCdTe MBE for the application of IRFPAs[J]. Scicentia Sinica Physica Mechanica & Astronomica, 2014,4(44):341(in Chinese).
30 陈路, 傅祥良, 王伟强 , 等. 面向HgCdTe红外焦平面探测器应用的分子束外延材料研究进展[J]. 中国科学:物理学力学天文学, 2014,4(44):368.
31 Mitra P, Case F C, Reine M B , et al. Progress in MOVPE of HgCdTe for advanced infrared detectors[J]. Journal of Electronic Materials, 1998,27(6):510.
32 Reine M B, Hairston A , O’Dette P, et al. Simultaneous MW/LW dual-band MOVPE HgCdTe 64 × 64 FPAs[J]. Proceeding of SPIE, 2008,3379:200.
33 Maxey C D, Camplin J P, Guilfoy I T , et al. Metal-organic vapor-phase epitaxial growth of HgCdTe device heterostructures on three-inch-diameter substrates[J]. Journal of Electronic Materials, 2003,32(7):656.
34 Piotrowski A, Madejczyk P, Gawron W , et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors[J]. Infrared Physics & Technology, 2007,49(3):173.
35 Khatei J, Pendyala N B , Rao K S R K. Solvothermal synjournal of Hg1-xCdxTe nanostructures-their structural and optical properties[J]. Journal of Alloys and Compounds, 2011,509(13):4632.
36 Selvig E, Hadzialic S, Skauli T , et al. Growth of HgTe nanowires[J]. Physica Scripta, 2006,2006(T126):115.
37 Haakenaasen R, Selvig E, Foss S , et al. Segmented nanowires of HgTe and Te grown by molecular beam epitaxy[J]. Applied Physics Letters, 2008,92(13):133108.
38 Haakenaasen R, Selvig E, Hadzialic S , et al. Nanowires in the Cd-HgTe material system[J]. Journal of Electronic Materials, 2008,37(9):1311.
39 Shao J, Lü X, Guo S L , et al. Impurity levels and bandedge electronic structure in as-grown arsenic-doped HgCdTe by infrared photoreflectance spectroscopy[J]. Physical Review B, 2009,15(80):155125.
40 Chang Y, Grein C H, Zhao J , et al. Carrier recombination lifetime characterization of molecular beam epitaxially grown HgCdTe[J]. Applied Physics Letters, 2008,93(19):192111.
41 褚君浩 . 窄禁带半导体物理学[M]. 北京: 科学出版社, 2005.
42 Shao J, Yue F Y, Lü X , et al. Photomodulated infrared spectroscopy by a step-scan fourier transform infrared spectrometer[J]. Applied Physics Letters, 2006,89(18):182121.
43 Shao J, Lü X, Lu W , et al. Cutoff wavelength of Hg1-xCdxTe epilayers by infrared photoreflectance spectroscopy[J]. Applied Phy-sics Letters, 2007,90(17):171101.
44 Shao J, Chen L, Lu W , et al. Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs[J]. Applied Physics Letters, 2010,96(12):121915.
45 Martyniuk P, Antoszewski J, Martyniuk M , et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews, 2014,1(4):041102.
46 Sakimoto K K, Wong A B, Yang P D . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016,351(6268):74.
47 Zhang Y H, Ma W Q, Wei Y , et al. Long wavelength, very long wavelength and narrow-band long-/very-long wavelength two-color type-Ⅱ InAs/GaSb superlattice photodetectors[J]. Scientia Sincia Physica Mechanica & Astronomica, 2014,4(44):390(in Chinese).
47 张艳华, 马文全, 卫炀 , 等. 长波和甚长波及其双色InAs/GaSb二类超晶格红外探测器的研究进展[J]. 中国科学:物理学力学天文学, 2014,4(44):390.
48 Levine B F . Quantum-well infrared photodetectors[J]. Journal of Applied Physics, 1993,74(8):1.
49 Haugan H J, Szmulowicz F, Brown G J , et al. Band gap tuning of InAs/GaSb type-Ⅱ superlattices for mid-infrared detection[J]. Journal of Applied Physics, 2004,96(5):2580.
50 Das B, Singaraju P . Novel quantum wire infrared photodetectors[J]. Infrared Physics and Technology, 2005,46(3):209.
51 Germann T D, Strittmatter A, Pohl J , et al. High-power semiconductor disk laser based on InAs/GaAs submonolayer quantum dots[J]. Applied Physics Letters, 2008,92(10):101123.
52 Ting D Z, Soibel A, Rafol S B , et al. Development of quantum well, quantum dot, and type Ⅱ superlattice infrared photodetectors[J]. Journal of Applied Remote Sensing, 2014,8(1):084998
53 Rogalski A . InAs1-xSbx in frared detectors[J]. Progress in Quantum Electronics, 1989,13(3):191.
54 Xing W R, Li J . Recent progress of quantum well infrared photodetectors[J]. Laser & Infrared, 2013,43(2):144(in Chinese).
54 邢伟荣, 李杰 . 量子阱红外探测器最新进展[J]. 激光与红外, 2013,43(2):144.
55 Nasr A, Aboshosha A , AlAdl S M. Dark current characteristics of quantum wire infrared photodetectors[J]. IET Optoelectronics, 2007,3(1):140.
56 Jia Y N, Xu B, Wang Z G . Research progress on quantum dot infrared photodetectors[J]. Semiconductor Optoelectronics, 2012,33(3):314(in Chinese).
56 贾亚楠, 徐波, 王占国 . 量子点红外探测器的研究进展[J]. 半导体光电, 2012,33(3):314.
57 Rogalski A . Recent progress in third generation infrared detectors[J]. Journal of Modern Optics, 2010,57(18):1716.
58 Gunapala S D, Bandara S V, Liu J K , et al. 1024×1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications[J]. Semiconductor Science Technology 2005,20(5):473.
59 Razeghi M, Nguyen B M . Band gap tunability of type Ⅱ antimonide-based superlattices[J]. Physics Procedia, 2010,3(2):1207.
60 Haddadi A, Ramezani-Darvish S, Chen G X , et al. High operability 1024×1024 long wavelength type-Ⅱ superlattice focal plane array[J]. IEEE Journal Quantum Electronics, 2012,48(2):221.
61 Phillips J, Kamath K, Brock T , et al. Characteristics of InAs/AlGaAs self-organized quantum dot modulation doped field effect transistors[J]. Applied Physics Letters, 1998,72(26):3509.
62 Bhattacharya P, Mi Z . Quantum-dot optoelectronic devices[J]. Proceeding of the IEEE, 2007,95(9):1723.
63 Campbell J C, Madhukar A . Quantum-dot infrared photodetectors[J]. Proceeding of the IEEE, 2007,95(9):1815.
64 Crouse D, Crouse M, Mahapatra S , et al. Ⅱ-Ⅵ semiconductor quantum wire fabrication and application to IR detection[J]. NSTI-Nanotechnology, 2006,3:117.
65 Tsai C L, Cheng K Y, Chou S T . InGaAs quantum wire infrared photodetector[J]. Applied Physics Letters, 2007,91(18):181105.
66 Ting D Z, Hill C J, Soibel A , et al. Antimonide-based barrier infrared detectors[J]. Proceeding of SPIE, 2010,7660:56.
67 El_tokhy M S, Mahmoud I I, Konber H A , et al. Comparison stu-dies of infrared photodetectors with a quantum-dot and a quantum-wire base[J]. Opto-Electronics Review, 2011,19(4):405.
[1] 王留成, 薛蕾, 郭丹丹, 李伊光, 陈冲冲. 热解温度对竹炭黑基本性能的影响[J]. 材料导报, 2019, 33(8): 1285-1288.
[2] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[3] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[4] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[5] 闫存富, 李淑娟. 陶瓷材料低温挤压自由成形工艺液相迁移研究[J]. 《材料导报》期刊社, 2018, 32(4): 636-640.
[6] 周嵬, 王习习, 朱印龙, 戴洁, 朱艳萍, 邵宗平. 面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述[J]. 材料导报, 2018, 32(3): 337-356.
[7] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[8] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[9] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
[10] 周双双, 刘希琴, 刘子利, 侯志国, 田青超. 正火工艺对冷轧态低合金低温钢组织及拉伸性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 98-104.
[11] 王潇梦, 尹晓刚, 蒋团辉, 刘卫, 龚维. 退火对PPR管材专用料结晶行为及抗低温性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 65-69.
[12] 郭 伟,王 春,孙佳胜,陈 艳,俞平胜,蒋金海. 硫铝酸钙-贝利特水泥熟料的低温制备及其水化性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 35-39.
[13] 杜 超,刘 飞,万媛媛,龚泳帆,方永浩. 低质高碳粉煤灰制备粉煤灰贝利特水泥及其特性研究[J]. 《材料导报》期刊社, 2017, 31(24): 30-34.
[14] 张丰, 白银, 蔡跃波, 杜杰贵, 宁逢伟. 混凝土低温早强剂研究现状*[J]. 《材料导报》期刊社, 2017, 31(21): 106-113.
[15] 自兴发, 叶青, 刘瑞明, 程满, 黄文卿, 何永泰. N掺杂Cu2O薄膜的低温沉积及快速热退火研究*[J]. 《材料导报》期刊社, 2017, 31(16): 21-25.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed