Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 30-34    https://doi.org/10.11896/j.issn.1005-023X.2017.024.007
  第一届先进胶凝材料研究与应用学术会议 |
低质高碳粉煤灰制备粉煤灰贝利特水泥及其特性研究
杜 超,刘 飞,万媛媛,龚泳帆,方永浩
河海大学力学与材料学院,南京 211100
Preparation of Fly Ash Belite Cement from High-carbon Low-quality Fly Ash and Its Properties
DU Chao, LIU Fei, WAN Yuanyuan, GONG Yongfan, FANG Yonghao
College of Mechanics and Materials, Hohai University, Nanjing 211100
下载:  全 文 ( PDF ) ( 639KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用含碳量高、火山灰活性较低的堆存粉煤灰为原料,用水热合成-低温煅烧方法制备粉煤灰贝利特水泥,研究了配合料CaO掺量与在97 ℃±2 ℃下的蒸养时间、煅烧温度和煅烧时间对前驱物和粉煤灰贝利特水泥的组成及其基本物理力学性能的影响。结果表明:在97 ℃±2 ℃蒸养和800 ℃煅烧,粉煤灰中的莫来石和石英几乎不与CaO发生反应;800 ℃煅烧的粉煤灰贝利特水泥熟料中主要水硬性矿物为α’L-C2S和C12A7,当煅烧温度达900 ℃或更高时,贝利特以活性较低的β-C2S存在,并且熟料中有水化活性很低的钙铝黄长石形成。CaO掺量为30%的石灰-粉煤灰配合料在97 ℃蒸养10 h后经800 ℃煅烧1 h,制得28 d抗压强度达到30.2 MPa的粉煤灰贝利特水泥。粉煤灰贝利特水泥凝结快,可用于快修工程,但其需水量大,硬化浆体结构相对疏松,孔隙率较大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜 超
刘 飞
万媛媛
龚泳帆
方永浩
关键词:  粉煤灰  贝利特水泥  水热合成  低温煅烧    
Abstract: Stockpiled fly ash with high carbon-content and low reactivity was used to prepare belite cement by hydrothermal treatment followed by low temperature calcination. The effects of CaO content of starting mixture, hydrothermal treatment time at 97 ℃±2 ℃, calcination temperature and durating time on the composition of the precursor and clinker, and on the properties of the fly ash belite cement were investigated. The results show that the mullite and quartz in fly ash nearly do not take part in the reactions during hydrothermal treatment at 97 ℃±2 ℃ and calcination at 800 ℃. The main hydraulic minerals in the belite cement clinker are α’L-C2S and C12A7 when the clinker was calcined at 800 ℃, while β-C2S and gehlenite exist when the clinker was calcined at 900 ℃ or higher temperature. Fly ash belite cement with the compressive strength as high as 30.2 MPa at 28 d was prepared from mixture with the CaO content of 30%, by hydrothermal treatment at 97 ℃ for 10 h followed by calcination at 800 ℃ for 1 h. Fly ash belite cement is characterized by rapid setting, which makes it suitable for rush-repairing project, however, high water requirement which result in looser microstructure and higher porosity of the hardened cement paste.
Key words:  fly-ash    belite cement    hydrothermal synthesis    low temperature calcination
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TQ172.1  
基金资助: 江苏省产学研联合创新基金(BY2014002-04);国家自然科学基金国际合作项目(51461135001)
通讯作者:  方永浩:男,1956年生,博士,教授,博士研究生导师,主要从事高性能水泥基材料及其耐久性研究 E-mail:fangyh@hhu.edu.cn   
作者简介:  杜超:男,1992年生,硕士研究生,研究方向为高性能水泥基材料 E-mail:2274761416@qq.com
引用本文:    
杜 超,刘 飞,万媛媛,龚泳帆,方永浩. 低质高碳粉煤灰制备粉煤灰贝利特水泥及其特性研究[J]. 《材料导报》期刊社, 2017, 31(24): 30-34.
DU Chao, LIU Fei, WAN Yuanyuan, GONG Yongfan, FANG Yonghao. Preparation of Fly Ash Belite Cement from High-carbon Low-quality Fly Ash and Its Properties. Materials Reports, 2017, 31(24): 30-34.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.007  或          http://www.mater-rep.com/CN/Y2017/V31/I24/30
1 http://www.chinabgao.com/stat/stats/45364.html.
2 Fang Yonghao, Cheng Liqing, Gong Yongfan, et al. Development and future of fly ash belite cement[J]. J Chin Ceram Soc, 2015,43(2):165(in Chinese).
方永浩,承礼清,龚泳帆,等. 粉煤灰贝利特水泥的研究现状与前景[J].硅酸盐学报,2015,43(2):165.
3 Mccarthy M J, Jones M R, Zheng L, et al. Characterising long-term wet-stored fly ash following carbon and particle size separation[J]. Fuel, 2013,111:430.
4 Zhao Jihui, Wang Dongmin, Wang Xueguang, et al. Ultrafine grinding of fly ash with grinding aids: Impact on particle characteristics of ultrafine fly ash and properties of blended cement containing ultrafine fly ash[J]. Constr Build Mater, 2015,78:250.
5 Han Fanghui, Wang Qiang, Feng Jingjing. Differences among the roles of ground fly ash in the paste, mortar and concrete[J]. Constr Build Mater, 2015,93:172.
6 Rabah H, Othmane B, Sofiane G,et al. The sequel of modified fly ashes using high energy ball milling on mechanical performance of substituted past cement[J]. Mater Des,2016,90:29.
7 Yan Xiaomin. Study of performance of efficient activated fly ash and its developing[J]. Fly Ash, 2013(4):7(in Chinese).
颜晓敏.高效活化粉煤灰的研制及其性能研究[J]. 粉煤灰,2013(4):7.
8 Ming Panrong, Yang Nanru, Zhong Baiqian, et al. Special low-lime fly ash cement[C]// Proc1985 Beijing Int Symp Cem Concr. Beijing: China Building Industry Press, 1985:444.
9 Pimraksa K, Hanjitsuwan S, Chindaprasirt P. Synthesis of belite cement from lignite fly ash[J]. Ceram Int, 2009, 35(6):2415.
10Kacimi L, Cyr M, Clastres P. Synthesis of α’L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure[J]. J Hazard Mater, 2010,181(1-3):593.
11Guerrero A, Go I S, Mac A S A, et al. Mechanical properties, pore size distribution, and pore solution of fly ash-belite cement mortars[J]. Cem Concr Res, 1999,29(11):1753.
12Jiang W M, Roy D M. Hydrothermal processing of new fly ash cement[J]. Ceram Bull, 1997,71(4):642.
13Go I S, Guerrero A, Lux N M P, et al. Activation of the fly ash pozzolanic reaction by hydrothermal conditions[J]. Cem Concr Res, 2003,33(7):1399.
14Guerrero A, Go I S, Campillo I, et al. Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters[J]. Environ Sci Technol,2004,38(11):3209.
15Go I S, Guerrero A. SEM/EDX characterization of the hydration products of belite cements from class C coal fly ash[J]. J Am Ceram Soc, 2007,90(12):3915.
16Guerrer O A, Go I S, Moragues A, et al. Microstructure and mechanical performance of belite cements from high calcium coal fly ash[J]. J Am Ceram Soc,2005,88(7):1845.
17Go I S, Guerrero A. Hydraulic activity of belite cement from class C coal fly ash. Effect of curing and admixtures[J]. Mater Constr, 2006,56(283):61.
[1] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[2] 邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
[3] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[4] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[5] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[6] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[7] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[8] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[9] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[10] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[11] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[12] 钱如胜,张云升,张宇,杨永敢. 水泥-粉煤灰体系早龄期液相离子浓度与电导率的关系[J]. 《材料导报》期刊社, 2018, 32(12): 2066-2071.
[13] 李北罡,王 敏. Fe/CTS/AFA复合材料对染料的高效吸附[J]. 《材料导报》期刊社, 2018, 32(10): 1606-1611.
[14] 张耀君, 余淼, 张力, 张懿鑫, 康乐. 一种新型石墨烯-粉煤灰基地质聚合物复合材料的制备及光催化应用*[J]. CLDB, 2017, 31(9): 50-56.
[15] 李苗苗, 陈平, 王辉, 李建超. 粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 36-40.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed