Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (21): 106-113    https://doi.org/10.11896/j.issn.1005-023X.2017.021.015
  材料综述 |
混凝土低温早强剂研究现状*
张丰1, 2, 白银1, 2, 蔡跃波1, 2, 杜杰贵3, 宁逢伟1, 2
1 南京水利科学研究院,南京 210029;
2 水文水资源与水利工程科学国家重点实验室,南京 210024;
3 云南省大山包一级公路建设指挥部,昭通 657000
Research Status of Low Temperature Early Strength Agents for Concrete
ZHANG Feng1,2, BAI Yin1,2, CAI Yuebo1,2, DU Jiegui3, NING Fengwei1,2
1 Nanjing Hydraulic Research Institute, Nanjing 210029;
2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing 210024;
3 Construction Headquarters of Dashanbao Arterial Road in Yunnan Province, Zhaotong 657000
下载:  全 文 ( PDF ) ( 1256KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在冬期施工或有早强要求的混凝土工程中掺早强剂,对加快工程进度、提高混凝土质量等有重要作用,其掺量一般不超过水泥质量的5%。目前传统早强组分已不能满足绿色、高性能混凝土的要求,且之前研究多在常温下进行,而低温(尤其是5 ℃)环境下的研究相对较少,同时低温早强效果相对有限,低温下的作用机理也不明确。随着工程建设的进一步发展,开发既满足低温早强要求又有良好工作性的低温早强剂是今后的一个重要研究方向。在分类总结各常见早强组分的性能特点、存在问题及作用机理的基础上,介绍了低温条件下早强剂的研究、应用现状,为后续低温早强剂的研制指明方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丰
白银
蔡跃波
杜杰贵
宁逢伟
关键词:  混凝土  早强剂  低温  机理    
Abstract: In winter construction or concrete engineering with early strength requirements, early strength agent plays an important role in speeding up the construction schedule and improving the quality of concrete, and its content is generally not more than 5% of the mass of cement. At present, the traditional early strength components are unable to meet the requirements of green and high performance concrete. Most of the previous studies about early strength agent are conducted at room temperature, while the research of early strength agent in low temperature environment (especially 5 ℃) is relatively insufficient, and low temperature early strength effect is relatively limited, the mechanism of low temperature early strength is also not clear. With the further development of engineering construction, it is an important research direction to develop low temperature early strength agent which meets the requirements of low temperature early strength and good workability. Based on the classification summary of the performance characteristics, existing problems and action mechanisms of the common early strength components, this paper introduces the research and application of early strength agent in low temperature, and also point out the development direction of low temperature early strength agent.
Key words:  concrete    early strength agent    low temperature    mechanism
出版日期:  2017-11-10      发布日期:  2018-05-08
ZTFLH:  TQ172  
基金资助: 云南省交通运输厅行业科技攻关项目(云交科教[2016]56号一(三));中央级公益性科研院所基本科研业务费专项资金(Y416003)
通讯作者:  蔡跃波,男,1958年生,教授,博士研究生导师,主要从事水工材料及大坝安全管理的研究 E-mail:ybcai@nhri.cn   
作者简介:  张丰:男,1989年生,博士研究生,主要从事水工材料及混凝土耐久性的研究 E-mail:zhangfeng19891128@163.com
引用本文:    
张丰, 白银, 蔡跃波, 杜杰贵, 宁逢伟. 混凝土低温早强剂研究现状*[J]. 《材料导报》期刊社, 2017, 31(21): 106-113.
ZHANG Feng, BAI Yin, CAI Yuebo, DU Jiegui, NING Fengwei. Research Status of Low Temperature Early Strength Agents for Concrete. Materials Reports, 2017, 31(21): 106-113.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.021.015  或          https://www.mater-rep.com/CN/Y2017/V31/I21/106
1 Du Qin. Study on early strength performance of polycarboxylate superplasticizer with mechanism[D]. Wuhan: Wuhan University of Technology, 2012(in Chinese).
杜钦. 聚羧酸减水剂的早强性能及其机理研究[D]. 武汉: 武汉理工大学, 2012.
2 Wu Peng, Lv Xianjun, Liang Zhiqiang, et al. The mechanism and application of concrete hardening accelerator[J]. Metal Mine, 2014(12):20(in Chinese).
吴蓬, 吕宪俊, 梁志强, 等. 混凝土早强剂的作用机理及应用现状[J]. 金属矿山, 2014(12):20.
3 Leng Da, Zhang Xiong, Shen Zhonglin. Effects of water reducing agent and hardening accelerating admixture on the performance of cement-based grouting material[J]. New Building Mater, 2008, 35(11):21(in Chinese).
冷达, 张雄, 沈中林. 减水剂和早强剂对水泥基灌浆材料性能的影响[J]. 新型建筑材料, 2008, 35(11):21.
4 Zhang Chao. The complex of early strength agent for cement-based grouting material[J]. Technol Wind, 2010(22):162(in Chinese).
张超. 水泥基注浆材料早强剂的复配[J]. 科技风, 2010(22):162.
5 Gao Zhenguo, Luo Yonghui, Shi Hao. The research and exploit for concrete hardening accelerator without Na+ and K+[J]. Low Temperature Architecture Technol, 2002(3):67(in Chinese).
高振国, 罗永会, 石浩. 无钠(钾)混凝土早强剂的研究及开发[J]. 低温建筑技术, 2002(3):67.
6 Tao Xuelan, Wang Piming. Influence differences of sodium sulfate on concrete performance of different strength[J]. Res Appl Building Mater, 2011(6):6(in Chinese).
陶雪兰, 汪丕明. 硫酸钠对不同强度混凝土性能的影响差异[J]. 建材技术与应用, 2011(6):6.
7 Wang Wenting. Research on effect and mechanism of inorganic additives on concrete carbonation performance[D]. Xi’an: Xi’an University of Architecture and Technology, 2013(in Chinese).
王文婷. 无机盐类外加剂对混凝土碳化性能的影响及机理探讨[D]. 西安: 西安建筑科技大学, 2013.
8 Jiang Meifen, Lv Xianjun. Research and application progresses of concrete early strength agent[J]. Bull Chin Ceram Soc, 2014, 33(10):2527(in Chinese).
姜梅芬, 吕宪俊. 混凝土早强剂的研究与应用进展[J]. 硅酸盐通报, 2014, 33(10):2527.
9 Liu Junzhe, Tai Sungho, Takafumi Noguchi. Study on long-term inhibiting effectiveness of nitrite ion in concrete mixed with anti-free-zing admixtures[J]. Concrete, 2004(9):14(in Chinese).
柳俊哲, 太星镐, 野口贵文. 掺防冻剂混凝土中亚硝酸盐的长期阻锈效果[J]. 混凝土, 2004(9):14.
10Richardson A. Strength development of plain concrete compared to concrete with a non-chloride accelerating admixture[J]. Struct Survey, 2007, 25(5):418.
11Schutter G D, Luo L. Effect of corrosion inhibiting admixtures on concrete properties[J].Constr Building Mater, 2004, 18(7):483.
12Ann K Y, Jung H S, Kim H S, et al. Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete[J]. Cem Concr Res, 2006, 36(3):530.
13广州大学. 一种混凝土复合超早强剂及其使用方法: 中国, 201510894979. 6[P]. 2015-12-07.
14陈子川. 低温混凝土早强剂: 中国,201110049598.X[P].2011-03-02.
15Ding Qingjun, He Liangyu, Liang Yuanbo, et al. Ultra-early strength expensive high performance grout[J]. J Wuhan University of Technology(Transportation Sci Eng), 2014(3):498(in Chinese).
丁庆军, 何良玉, 梁远博, 等. 超早强微膨胀水下灌浆料的研究[J]. 武汉理工大学学报(交通科学与工程版), 2014(3):498.
16Matusinovic T, Curlin D. Lithium salts as set accelerators for high alumina cement[J]. Cem Concr Res, 1993, 23(4):885.
17Chen Dachuan, Cheng Chao, Huang Zhengyu. Influence of additives on properties of sulphoaluminate cement[J]. J Railway Sci Eng, 2015(5):1074(in Chinese).
陈大川, 程超, 黄政宇. 几种外加剂组分对硫铝酸盐水泥性能的影响[J]. 铁道科学与工程学报, 2015(5):1074.
18Han Jianguo, Yan Peiyu. Influence of lithium compound on sulphoaluminate cement hydration process[J]. J Chin Ceram Soc, 2010, 38(4):608(in Chinese).
韩建国, 阎培渝. 锂化合物对硫铝酸盐水泥水化历程的影响[J]. 硅酸盐学报, 2010, 38(4):608.
19Yao Bingwen, Gao Zhenguo, Zhang Xiqing, et al. Thermodynamic analysis of the early age strength improvement of concrete with seed cristal[J]. Low Temperature Architecture Technol, 2004(6):9(in Chinese).
要秉文, 高振国, 张希清, 等. 晶种提高混凝土早期强度的热力学分析[J]. 低温建筑技术, 2004(6):9.
20杨伯科. 混凝土实用新技术手册[M]. 长春: 吉林科学技术出版社, 1998.
21Haruehansapong S, Pulngern T, Chucheepsakul S. Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2[J]. Constr Building Mater, 2014, 50(2):471.
22Xu Xun, Lu Zhongyuan. Effect of nano-silicon dioxide on hydration and hardening of pertland cement[J]. J Chin Ceram Soc, 2007, 35(4):478(in Chinese).
徐迅, 卢忠远. 纳米二氧化硅对硅酸盐水泥水化硬化的影响[J]. 硅酸盐学报, 2007, 35(4):478.
23Rong Zhidan, Wang Rui, Lin Fabin. Study on the microstructure evolution of nano-ultra high performance cementitious composites[J]. J Shenzhen University (Sci Eng), 2013, 30(6):611(in Chinese).
戎志丹, 王瑞, 林发彬. 纳米超高性能水泥基复合材料微结构演变研究[J]. 深圳大学学报(理工版), 2013, 30(6):611.
24Li Guhua, Gao Bo. Effect of level SiO2 and level CaCO3 on concret performance[J]. J China Railway Soc, 2006, 28(1):131(in Chinese).
李固华, 高波. 纳米微粉SiO2和CaCO3对混凝土性能影响[J]. 铁道学报, 2006, 28(1):131.
25Hou Xianhai, Bu Yuhuan, Guo Shenglai, et al. Development and performance evaluation of nano-SiO2 complex accelerator[J]. Oil Drilling Production Technol, 2016, 38(3):322(in Chinese).
侯献海, 步玉环, 郭胜来, 等. 纳米二氧化硅复合早强剂的开发与性能评价[J]. 石油钻采工艺, 2016, 38(3):322.
26Huang Zhengyu, Zu Tianyu. Influence of nano-CaCO3 on ultra high performance concrete[J]. Bull Chin Ceram Soc, 2013, 32(6):1103(in Chinese).
黄政宇, 祖天钰. 纳米CaCO3对超高性能混凝土性能影响的研究[J]. 硅酸盐通报, 2013, 32(6):1103.
27Qian Feng. Research on the performance of cement-based grouting material by applied the principle of DSP[D]. Changsha: Hunan University, 2009(in Chinese).
钱峰. DSP改性水泥基灌浆材料性能研究[D]. 长沙: 湖南大学, 2009.
28Meng Tao, Qian Kuangliang, Qian Xiaoqian, et al. Effect of the nano-CaCO3 on hydrated properties and interface of cement paste[J]. Rare Metal Mater Eng, 2008, 37(S2):667(in Chinese).
孟涛, 钱匡亮, 钱晓倩, 等. 纳米碳酸钙颗粒对水泥水化性能和界面性质的影响[J]. 稀有金属材料与工程, 2008, 37(S2):667.
29Brykov A S, Vasil’EvA S, Mokeev M V. Hydration of portland cement in the presence of aluminum-containing setting accelerators[J]. Russian J Appl Chem, 2013, 86(6):793.
30Ma Baoguo, Xu Yonghe, Dong Rongzhen. Influence of triethanolmine on the initial structure formation and mechanical properties of cement[J]. J Building Mater, 2006, 9(1):6(in Chinese).
马保国, 许永和, 董荣珍. 三乙醇胺对水泥初始结构和力学性能的影响[J]. 建筑材料学报, 2006, 9(1):6.
31Xie Xingjian. Study on the application technology of concrete early strength agent[J]. New Building Mater, 2005(5):33(in Chinese).
谢兴建. 混凝土早强剂应用技术研究[J]. 新型建筑材料, 2005(5):33.
32Liu Jinqiang. Research on the synergestic effect of polycarboxylate superplasticizer and hardening accelerants[D]. Beijing: Beijing University of Technology, 2008(in Chinese).
刘进强. 聚羧酸系减水剂与早强组分的复合性能研究[D]. 北京: 北京工业大学, 2008.
33Wen Shengkui. Research on the system of low temperature and early strength cement[D]. Beijing: China University of Petroleum, 2008(in Chinese).
温盛魁. 低温早强水泥浆体系的研究[D]. 北京: 中国石油大学, 2008.
34Zhang M S. Preparation and mechanism analysis of high-efficiency early strength agent[J]. Adv Mater Res, 2012, 535-537:2483.
35Xu Fengtong, Chen Ruibo, Gu Ke. The application of formic acid calcium early strength agent in dry powder mortar[J]. Wall Mater Innovation Energy Saving Buildings, 2008(2):56(in Chinese).
许凤桐, 陈瑞波, 顾轲. 甲酸钙早强剂在干粉砂浆中的应用[J]. 墙材革新与建筑节能, 2008(2):56.
36Wang Juan, Song Dan, Wu Tingwei. Effects and mechanism analysis of calcium formate in different polymer modified waterproofing mortar[J]. China Building Waterproofing, 2013(8):23(in Chinese).
王娟, 宋丹, 吴廷伟. 甲酸钙在不同聚合物防水砂浆体系中的作用效果及机理分析[J]. 中国建筑防水, 2013(8):23.
37Heikal M. Effect of calcium formate as an accelerator on the physicochemical and mechanical properties of pozzolanic cement pastes[J]. Cem Concr Res, 2004, 34(6):1051.
38Li Biao. The experimental research of carbamide concrete compound additional acidifier[J]. J Liaoning Provincial College of Communications, 2000, 2(3):41(in Chinese).
李彪. 尿素型混凝土复合外加剂试验研究[J]. 辽宁省交通高等专科学校学报, 2000, 2(3):41.
39Son S W, Yeon J H. Mechanical properties of acrylic polymer concrete containing methacrylic acid as an additive[J]. Constr Building Mater, 2012, 37(12):669.
40Zhang Yunli, Zhang Shien, Zhang Ying, et al. Admixture technology of concrete in winter construction in the middle and lower reaches of the Yangtze river[J]. Concrete, 2002(9):45(in Chinese).
张云理, 张师恩, 张莹, 等. 长江中下游地区混凝土冬季施工外加剂技术[J]. 混凝土, 2002(9):45.
41Li Xianmin, Tan Jinhai, Lei Chenghui. Application of triethanolamine in concrete engineering[J]. Electric Power Constr, 1995(2):40(in Chinese).
李献民, 谭金海, 雷成慧. 三乙醇胺在混凝土工程中的应用[J]. 电力建设, 1995(2):40.
42李习章, 张京涛, 王安岭. 混凝土早强组分在不同温度下的早强性能研究[C]∥ “第四届全国特种混凝土技术”学术交流会暨中国土木工程学会混凝土质量专业委员会年会. 贵阳, 2013.
43Hou Pengkun, Wang Kejin, Qian Jueshi, et al. Effects of colloidal nano SiO2 on fly ash hydration[J]. Cem Concr Compos, 2012, 34(10):1095.
44Yao Bingwen, Ding Qingjun, Mei Shigang, et al. New hardening accelerator affecting concrete properties[J]. Concrete, 2005(9):49(in Chinese).
要秉文, 丁庆军, 梅世刚, 等. 新型早强剂对混凝土性能的影响研究[J]. 混凝土, 2005(9):49.
45Xu Qinglei, Meng Tao, Huang Miaozhou. Effects of nano-CaCO3 on the compressive strength and microstructure of high strength concrete in different curing temperature[J]. Appl Mech Mater, 2011, 121-126:126.
46Xie Youjun, Liu Wei, Liu Baoju, et al. Experimental study of compressive strength of early-strength concrete cured under low tempe-ratures for Qinghai-Tibet railway[J]. Bridge Constr, 2003(2):27(in Chinese).
谢友均, 刘伟, 刘宝举, 等. 青藏铁路低温早强混凝土抗压强度试验研究[J]. 桥梁建设, 2003(2):27.
47苏州二建建筑集团有限公司, 苏州市建筑科学研究院有限公司. 混凝土超早强剂:中国, 200710190542.X[P]. 2007-11-30.
48Guan B, Ye Q, Zhang J, et al. Interaction between α-calcium sulfate hemihydrate and superplasticizer from the point of adsorption characteristics, hydration and hardening process[J]. Cem Concr Res, 2010, 40(2):253.
49Ma Cunqian, Ran Qianping, Mao Yonglin, et al. Influence of super early strength polycarboxylate superplasticizer on early strength development of concrete[J]. China Concr Cem Products, 2009(5):4(in Chinese).
马存前, 冉千平, 毛永琳, 等. 超早强型聚羧酸盐超塑化剂对混凝土早期强度发展的影响[J]. 混凝土与水泥制品, 2009(5):4.
50Houst Y F, Bowen P, Perche F, et al. Design and function of novel superplasticizers for more durable high performance concrete[J]. Cem Concr Res, 2008, 38(10):1197.
51Li Ping, Zhou Zhuanyun, Cai Qiquan, et al. Effect of complex formulation of sodium sulfate and poly carboxylic acid water reducing agent on performances of concrete[J]. New Building Mater, 2014, 41(9):38(in Chinese).
李萍, 周转运, 蔡其全, 等. 硫酸钠与聚羧酸减水剂复配对混凝土性能的影响研究[J]. 新型建筑材料, 2014, 41(9):38.
52Li Ping, Yang Zhao, Zhang Jian, et al. Study on effect of complexes of triethanolamine and polycarboxylic acid water reducing agent on performances of concrete[J]. Ind Constr, 2014(S1):972(in Chinese).
李萍, 杨钊, 张建, 等. 三乙醇胺与聚羧酸减水剂复配对混凝土性能的影响研究[J]. 工业建筑, 2014(S1):972.
53Bian Baozhi, Zhang Yunli. Study on the performance of venus series early strength[J]. Concrete, 1992(5):37(in Chinese).
卞葆芝, 张云理. 金星系列早强外加剂性能的研究[J]. 混凝土, 1992(5):37.
54东南大学. 一种硅酸盐水泥混凝土的超早强剂:中国, 201510107861.4 [P]. 2015-03-11.
55Daczko J A, Kurtz M A, Dulzer M. High early-strength fiber reinforced cementitious composition:US, 6942727[P]. 2005-09-13.
56Wang Ziming, Sun Jun. Study on performance of polycarboxylate compounded with anti-freezing admixture[J]. Low Temperature Architecture Technol, 2008, 30(3):1(in Chinese).
王子明, 孙俊. 聚羧酸高效减水剂与防冻组分复合研究[J]. 低温建筑技术, 2008, 30(3):1.
57Cheng Pingjie, Wang Ningning, Wang Kai, et al. Influence study of polycarboxylate superplasticizer complexed with sodium thiocyanate on hydration of cement[J]. Bull Chin Ceram Soc, 2014, 33(10):2672(in Chinese).
程平阶, 王宁宁, 王凯, 等. 硫氰酸钠与聚羧酸减水剂复配对水泥水化的影响研究[J]. 硅酸盐通报, 2014, 33(10):2672.
58Widmer J, Sulser U, Burge T A, et al. Multipurpose cement dispersing polymers for high flow and high strength concrete: US,6387176[P]. 2002-05-14.
59Ran Q, Somasundaran P, Miao C, et al. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions[J]. J Colloid Interface Sci, 2009, 336(2):624.
60Plank J, 赵霄龙, 薛庆, 等. 当今欧洲混凝土外加剂的研究进展[C]∥ 混凝土外加剂及其应用技术. 北京, 2004:18.
61Cerull T. 寒冷气候下克提高混凝土早期强度的新型超塑化剂[C]∥第七届超塑化剂及其它混凝土外加剂国际会议译文集. 尹冬梅译. 柏林, 2005.
62Clemente P, Ferrari G, Gamba M, et al. High early strength superplasticizer:EP,1547986[P]. 2008-05-28.
63Tang Xiusheng, Huang Guohong, Zhu Yeran, et al. Research on synthesis and performance of early-strength polycarboxylate superplasticizer[J]. New Building Mater, 2013, 40(5):11(in Chinese).
唐修生, 黄国泓, 祝烨然, 等. 早强型聚羧酸系减水剂的制备及其性能试验研究[J]. 新型建筑材料, 2013, 40(5):11.
64中国海洋石油总公司, 中海油田服务股份有限公司. 一种深水固井用低温早强剂:中国,201010293396.5[P]. 2010-09-27.
65Qi Zhigang. Research on a low temperature and low hydration heat cement slurry system[D]. Beijing: China University of Petroleum, 2009(in Chinese).
齐志刚. 低温低水化热固井水泥浆体系研究[D]. 北京: 中国石油大学, 2009.
66Wang Chengwen, Wang Ruihe, Chen Erding, et al. Performance and mechanism of the lithium-salt accelerator in improving properties of the oil-well cement under low temperature[J]. Acta Petrolei Sinica, 2011(1):140(in Chinese).
王成文, 王瑞和, 陈二丁, 等. 锂盐早强剂改善油井水泥的低温性能及其作用机理[J]. 石油学报, 2011(1):140.
67Li Zuochen. The performance evaluation of low temperature early strength agent X-1 for oil cement[J]. Sci Technol Eng, 2010, 10(16):3975(in Chinese).
李作臣. 油井水泥低温早强剂X-1的性能评价[J]. 科学技术与工程, 2010, 10(16):3975.
68Liu Qingwang, Xu Weiqiang, Gao Tingsong, et al. Performance evaluation of a new low temperature high early strength additive QZ-1[J]. Sci Technol Eng, 2010, 10(34):8521(in Chinese).
刘庆旺, 徐卫强, 高亭松, 等. 新型油井水泥低温早强剂QZ-1性能评价[J]. 科学技术与工程, 2010, 10(34):8521.
69Bu Yuhuan, Hou Xianhai, Guo Shenglai. Study on low temperature cementing slurry[J]. Drilling Fluid Completion Fluid, 2016, 33(1):79(in Chinese).
步玉环, 侯献海, 郭胜来. 低温固井水泥浆体系的室内研究[J]. 钻井液与完井液, 2016, 33(1):79.
70Kontoleontos F, Tsakiridis P E, Marinos A. Influence of colloidal nanosilica on ultrafine cement hydration: Physicochemical and microstructural characterization[J]. Constr Building Mater, 2012, 35(35):347.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[3] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[4] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[5] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[6] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[7] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[8] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[9] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[10] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[11] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[12] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[13] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[14] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[15] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed