Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 636-640    https://doi.org/10.11896/j.issn.1005-023X.2018.04.026
  材料研究 |
陶瓷材料低温挤压自由成形工艺液相迁移研究
闫存富1, 2, 李淑娟1
1 西安理工大学机械与精密仪器学院,西安 710048;
2 黄河科技学院机械工程学院,郑州 450063
Study on Liquid Phase Migration During Freeze-form Extrusion Fabrication of Ceramic Materials
YAN Cunfu1, 2, LI Shujuan1
1 School of Mechanical and Instrumental Engineering, Xi'an University of Technology, Xi'an 710048;
2 School of Mechanical Engineering, Huanghe S&T College, Zhengzhou 450063;
下载:  全 文 ( PDF ) ( 1181KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用正交试验法,研究了挤压工艺参数对水基陶瓷膏体低温挤压成形过程中挤出膏体的液相含量的影响。正交试验中选择挤压速度、挤出喷嘴长度及挤出间隔时间作为试验因素,挤出膏体中的液相含量作为评价指标。试验数据的极差和方差分析结果表明:液相迁移随挤出速度增大而减小,随挤出喷嘴长度的增加和间隔时间的延长而增大; 各因素影响液相迁移的显著性参数依次为挤压速度>挤出喷嘴长度>挤出间隔时间。同时,建立挤出膏体中液相含量与工艺参数之间的回归预测模型。通过对比试验结果和模型计算结果发现:在本试验条件下,预测结果与试验结果的相对误差为1.410%,可对挤压过程中的液相迁移进行预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫存富
李淑娟
关键词:  水基陶瓷膏体  低温挤压自由成形  液相迁移  正交试验  回归模型    
Abstract: Influences of extrusion parameters on liquid content of extrudate for freeze-form extrusion fabrication of aqueous ceramic pastes were analyzed by the orthogonal test. In the test, extrusion parameters including the extrusion velocity, the extrusion nozzle length, the extrusion interval time were examined, while the liquid content of extrudate was used as the evaluation index of extrusion process. The analysis of range and variance of test data indicates that liquid phase migration during extrusion process becomes large with the increasing of the extrusion interval time and the extrusion nozzle length, and the decreasing of the extrusion velocity. The significance order of factors are as follows: the extrusion velocity>the extrusion nozzle length>the extrusion interval time. At the same time, the prediction model between the liquid content in extrudate and the parameters was established. By comparing the results of orthogonal experiment and prediction model calculation, it can be inferred that the relative error between the value of the prediction model calculated and the experiment measured is 1.410% under the test condition, the prediction model could be used to predict the liquid migration in extrusion process.
Key words:  aqueous ceramic paste    freeze-form extrusion fabrication    liquid phase migration    orthogonal test    regression model
出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TQ174.7  
  TJ04  
基金资助: 国家重大基础研究发展计划(973计划)资助项目(2009CB724406); 陕西省自然科学基础研究计划资助项目(2015JQ5182); 陕西省教育厅专项科研计划资助项目(14JK1515); 郑州市科技攻关项目(20140754)
通讯作者:  李淑娟:女,1968年生,博士,教授,博士研究生导师,主要从事制造过程建模、优化和控制,三维零件快速成型制造业管理信息系统的研究 E-mail:benkexuesheng@163.com   
作者简介:  闫存富:男,1972年生,博士研究生,教授,主要从事陶瓷材料快速成型数字化制造技术的研究 E-mail:ycf100@126.com
引用本文:    
闫存富, 李淑娟. 陶瓷材料低温挤压自由成形工艺液相迁移研究[J]. 《材料导报》期刊社, 2018, 32(4): 636-640.
YAN Cunfu, LI Shujuan. Study on Liquid Phase Migration During Freeze-form Extrusion Fabrication of Ceramic Materials. Materials Reports, 2018, 32(4): 636-640.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.026  或          https://www.mater-rep.com/CN/Y2018/V32/I4/636
1 Zhou R Y, Shuai M B, Jiang C. Research progress in additive manufacturing of technology of ceramic material[J].Materials Review A:Review Papers,2016,30(1):67(in Chinese).
周汝垚,帅茂兵,蒋驰.陶瓷材料增材制造技术研究进展[J].材料导报:综述篇,2016,30(1):67.
2 Yang C,Shui A Z,Qin D,et al. Preparation and properties of sound absorption porous ceramics by gelcasting [J].Journal of Synthetic Crystals,2014,43(10):2567(in Chinese).
杨晨,税安泽,覃东,等.凝胶注模法制备吸声多孔陶瓷及其性能研究[J].人工晶体学报,2014,43(10):2567.
3 Hsiao Chuan Yen, Hwa Hsing Tang. Study on direct fabrication of ceramic shell mold with slurry-based ceramic laser fusion and ceramic laser sintering[J].The International Journal of Advanced Manfucturing Technology,2012,60(9/12):1009.
4 Wang D, Feng J C, Wang X, et al. Modeling for aircraft based on 3D printing technology and SPN[J].Journal of Ordnance Equipment Engineering,2017,38(2):149(in Chinese).
王栋,冯佳晨,王鑫,等.基于3D打印与SPN的飞机备件供应流程建模[J].兵器装备工程学报,2017,38(2):149.
5 Ben Y, Zhang L, Wei S, et al. Research progress of 3D printed ceramic material[J].Materials Review A: Review Papers,2016,30(11):109(in Chinese).
贲玥,张乐,魏帅,等.3D打印陶瓷材料研究进展[J].材料导报:综述篇,2016,30(11):109.
6 Yu Y, Shi T C, Sun F F,et,al. Study and application status of additive manufacturing of typical inorganic non-metallic materials[J].Materials Review A:Review Papers,2016,30(11):119(in Chinese).
于云,史廷春,孙芳芳,等.典型无机非金属材料增材制造研究与应用现状[J].材料导报:综述篇,2016,30(11):119.
7 Mason M S,Shu H T,et al. Aqueous-based extrusion fabrication of ceramics on Demand[J].Journal of Materials Processing Technology,2009,6:2946.
8 Yan C F, Li S J, Yang L P. Free freeze-form extrusion fabrication technology and application[J].Ordnance Material Science and Engineering,2016,39(1):104(in Chinese).
闫存富,李淑娟,杨磊鹏.低温挤压自由成形技术及其应用[J].兵器材料科学与工程,2016,39(1):104.
9 Benbow J, Bridgwater J. Paste flow and extrusion. Oxfwd series on advanced manufacturing 10[M].UK:Clarendon Press,1993.
10 Benbow J J, Oxley E W, Bridgwater J. The extrusion mechanics of pastes-the influence of paste formulation on extrusion parameters[J].Chemical Engineering Science,1987,42(9):2151.
11 Yaras P, Kalyon D M, Yilmazer U. Flow instabilities in Capillary flow of concentrated suspensions[J].Rheologica Acta,1994,33:48.
12 Rough S L, Wilson D I, Bridgwater J. A model liquid phase migration within an extrusion microcrystalline cellulose paste[J].Institution of Chemical Engineers,Part A,2002,80(10):701.
13 Mascia S, Patel M J, Rough S L,et al. Liquid phase migration in the extrusion and squeezing of microcrystalline cellulose pastes[J].European Journal of Pharmaceutical Sciences,2006,29:22.
14 Bayfield M, Haggett J A, Williamson M J,et al. Liquid phase migration in the extrusion of icing sugar pastes[J].Institution of Chemical Engineers,Part C,1998,76(3):39.
15 Yan C F, Li S J, Yang L P, et al. A liquid phase migration analysis and experiments for freeze-form extrusion fabrication of aqueous ceramic paste[J].China Mechanical Engineering,2016,27(16):2242(in Chinese).闫存富,李淑娟,杨磊鹏,等.陶瓷零件低温挤压自由成形工艺挤压过程及液相迁移研究[J].中国机械工程,2016,27(16):2242.
16 Liu Hongjun, Liu Jia, Ming C Leu, et al. Factors influencing paste extrusion pressure and liquid content of extrudate in freeze-form extrusion fabrication[J].Journal of Manufacturing Science and Engineering,2013,67:899.
17 Zheng H B. Research on extrusion process and extrusion device of ceramic paste[D].Lanzhou:Lanzhou University of Technology,2011(in Chinese).
郑华滨.陶瓷膏体挤出装置和挤出工艺研究[D].兰州:兰州理工大学,2011.
18 Li D J. Influence of extrusion parameters on liquid phase migration in intermittent extrusion process of aqueous ceramic paste[D].Lanzhou:Lanzhou University of Technology,2012(in Chinese).
李冬健.工艺参数对水基陶瓷膏体非连续挤出过程液相迁移的影响[D].兰州:兰州理工大学,2012.
19 Huang W M ,Yang H P ,Wu X C. Nitriding process optimization of hot stamping SDCM steel based on orthogonal experiment[J].Materials Review A:Review Papers,2016,30(11):590(in Chinese)
黄文明,杨浩鹏,吴晓春.基于正交试验法的热冲压SDCM钢渗氮工艺优化[J].材料导报:综述篇,2016,30(11):590.
20 Pi J L,Zhang S F,Xie C H. Research on PID control of rolling hose mechanism[J].Journal of Ordnance Equipment Engineering,2016,37(05):98(in Chinese).
皮嘉立,张世富,谢昌华.软质管线收卷机构PID控制研究[J].兵器装备工程学报,2016,37(05):98.
21 Fang J, Lu S Q, Wang K L, et al. Significance analysis of effect of process parameters on wall thinning for 21-6-9 high strength stainless steel tube NC bending[J].China Mechanical Engineering,2015,26(10):1233(in Chinese).
方军,鲁世强,王克鲁,等.工艺参数对21-6-9高强不锈钢管数控弯曲壁厚减薄影响的显著性分析[J].中国机械工程,2015,26(10):1233.
[1] 吕婉毓, 郭乃胜, 褚召阳, 房辰泽. 水性丙烯酸基道路标线涂料的制备与性能研究[J]. 材料导报, 2023, 37(18): 22040043-7.
[2] 赵巍, 花福安, 李建平. 基于机器学习的Laves相生成焓预测研究[J]. 材料导报, 2022, 36(Z1): 21120179-5.
[3] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[4] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[5] 徐县, 康晶, 蔡新华, 王维康. 碱激发锌渣胶凝材料设计制备与微观结构分析[J]. 材料导报, 2022, 36(22): 21050274-7.
[6] 王建民, 肖自强, 范奕涛, 汪能君, 王万祯, 柳俊哲. 组合混凝土界面粘结性能多因素正交试验分析[J]. 材料导报, 2022, 36(2): 20100056-6.
[7] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[8] 吴凡, 莫丙忠, 何利娟, 莫松平, 贾莉斯, 陈颖. 利用田口实验设计的NaNO3@SiO2微胶囊及其相变性能[J]. 材料导报, 2022, 36(14): 20090293-5.
[9] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[10] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[11] 苏毅, 李婷, 李爱群. 极小粒子增强聚氨酯阻尼性能的影响因素分析[J]. 材料导报, 2021, 35(4): 4205-4209.
[12] 朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.
[13] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[14] 侯永强, 尹升华, 赵国亮, 张鹏强, 杨世兴, 张敏哲, 刘洪斌. 聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究[J]. 材料导报, 2021, 35(19): 19030-19035.
[15] 李碧雄, 汪知文, 苏柳月, 冷发光. 减小EPS混凝土收缩的配合工艺试验研究[J]. 材料导报, 2021, 35(16): 16021-16027.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed