Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 81-89    https://doi.org/10.11896/j.issn.1005-023X.2017.09.011
  材料综述 |
改性碳纳米材料在低温燃料电池中的应用*
董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚
湖南大学化学化工学院,化学生物传感与计量学国家重点实验室,长沙 410082
Application of Modified Carbon Nanomaterials in Low-temperature Fuel Cells
DONG Qizhi, WAN Hansheng, ZENG Wenxia, YU Shumin, GUO Cancheng, YU Gang
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1929KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米材料(如炭黑、介孔碳、碳纳米管、石墨烯、碳纳米纤维、碳纳米角等)因其优异的电学性能和结构特性(良好的导电性能和超大的比表面积),被研究者广泛用作低温燃料电池贵金属催化剂的载体。然而,作为催化剂载体的这类碳纳米材料通常都存在电化学腐蚀的问题,碳载体的腐蚀通常会导致贵金属纳米催化剂的聚集,这将使催化剂的性能降低。为了改善碳载体的抗腐蚀性能,提高金属纳米粒子的活性和稳定性,许多研究工作致力于制备特殊结构的碳纳米材料,或对碳纳米材料进行表面修饰、掺杂等。与此同时,为了取代价格昂贵的贵金属催化剂,非贵金属催化剂的研究也成为一大热点,掺杂碳纳米材料就是研究热点之一。对近几年来围绕碳纳米材料制备、改性,以及这些改性碳纳米材料作为金属纳米粒子载体等的研究工作做了较为详细的综述,同时介绍了掺杂碳纳米材料作为氧还原催化剂的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董奇志
万汉生
曾文霞
余淑敏
郭灿城
余刚
关键词:  低温燃料电池  碳纳米材料  改性  载体  氧还原    
Abstract: Carbon nanomaterials, such as carbon blacks, mesoporous carbon, carbon nanotubes, grapheme,carbon nanofibers, carbon nanohorns and so forth, are widely used as catalyst supports in low-temperature fuel cells due to their excellent electrical properties and structural characteristics, such as ultra high surface area and excellent conductivity. However carbonaceous supports are susceptible to corrosion under the harsh chemical and electrochemical oxidation conditions. The corrosion of carbon supports causes detachment and agglomeration of precious meter nanoparticles, which will result in the degradation of catalyst performance. In order to improve the corrosion resistance of carbon supports, enhance the activity and stability of the metal nanoparticles, many researchers dedicated to the preparation of carbon nanomaterials with special structure, or modifying and doping the carbon supports, etc. At the same time, in order to replace expensive precious metal catalysts, the non-precious metal catalysts has also become hot spots, doped carbon nanomaterials is one of them. This paper presents an overview on the preparation and modification of carbon nonamaterials, and the impact on catalyst performance as these modified carbon nanomaterials are used as support in low-temperature fuel cells. This article also introduces the progress of doped carbon nanomaterials as oxygen reduction catalysts.
Key words:  low-temperature fuel cells    carbon nanomaterials    modification    support    oxygen reduction
               出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  O643.3  
  O613.71  
  TM911.4  
基金资助: *湖南省自然科学基金(13JJ5018); 国家级大学生创新训练计划(201510532035)
通讯作者:  董奇志:女,1967年生,硕士,副教授,硕士研究生导师,研究方向为材料电化学与电催化 E-mail:qzhdong67@163.com   
引用本文:    
董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
DONG Qizhi, WAN Hansheng, ZENG Wenxia, YU Shumin, GUO Cancheng, YU Gang. Application of Modified Carbon Nanomaterials in Low-temperature Fuel Cells. Materials Reports, 2017, 31(9): 81-89.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.011  或          http://www.mater-rep.com/CN/Y2017/V31/I9/81
[1] Rajalakshmi N, Lakshmi N, Dhathathreyan K S.Nano titanium oxi-de catalyst support for proton exchange membrane fuel cells[J]. Int J Hydrogen Energy,2008,33(24):7521.
[2] Bennetto H P,Stirling J L,Tanaka K, et al.Anodic reactions in microbial fuel cells[J]. Biotechnol Bioeng,1983,25(2):559.
[3] Howe K S, Kendall K J.Transient performance of micro-tubular solid oxide fuel cells[J]. J Fuel Cell Sci Technol,2011,8(3):5223.
[4] Costamagna P, Srinivasan S.Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects[J]. J Power Sources,2001,102(s1-2): 242.
[5] Ren X, Zelenay P, Thomas S, et al.Recent advances in direct metha-nol fuel cells at Los Alamos National Laboratory[J]. J Power Sources,2000,86(1-2):111.
[6] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345.
[7] Steele B C H. Material science and engineering: The enabling technology for the commercialisation of fuel cell systems[J]. J Mater Sci,2001,36(5):1053.
[8] Song C.Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century[J]. Catal Today,2002,77(1-2):17.
[9] Antolini E.Carbon supports for low-temperature fuel cell catalysts[J]. Appl Catal B:Environ,2009,88(1-2):1.
[10] Ralph T R, Hogarth M P.Catalysis for low temperature fuel cells[J]. Platinum Met Rev, 2002, 46(3):117.
[11] Kinoshita K.Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes[J].J Electrochem Soc,1990,137(3):845.
[12] Yahikozawa K, Fujii Y, Matsuda Y, et al.Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions[J]. Electrochim Acta, 1991,36(5-6):973.
[13] Kabbabi A, Gloaguen F, Andolfatto F, et al.Particle-size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton-exchange membrane[J].J Electroanal Chem,1994, 373(1-2):251.
[14] Yu X, Ye S.Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst[J].J Power Sources,2007,172(1):133.
[15] Vander Wal R L, Ticich T M, Curtis V E. Substrate-support inte-ractions in metal-catalyzed carbon nanofiber growth[J]. Carbon,2001,39(15):2277.
[16] Augustine R L,Tanielyan S K.Enantioselective heterogeneous catalysis. 2. 1, Examination of the formation of the individual (R) and (S) lactates in the cinchonidine modified platinum hydrogenation of pyruvate[J]. J Mol Catal A Chem,1996,112(1):93.
[17] Jha N, Leela Mohana Reddy A, Shaijumon M M, et al.Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell[J]. Int J Hydrogen Energy,2008,33(1):427.
[18] Yang Wei, Chen Shengzhou, Zou Hanbo, et al.Progress in nitrogen-doped non-noble catalysts for oxygen reduction[J].Chem Ind Eng Progress,2010,29(11):2085(in Chinese).杨伟, 陈胜洲, 邹汉波, 等. 氮掺杂非贵金属氧还原催化剂研究进展[J].化工进展,2010, 29(11):2085.
[19] Kinoshita K.Carbon: Electrochemical and physico chemical properties[M]. New York:John Wiley and Sons,1988.
[20] Pyun S I,Lee E J,Kim T Y, et al.Role of surface oxides in corrosion of carbon black in phosphoric acid solution at elevated temperature[J]. Carbon,1994,32(1),155.
[21] Wang M, Xu F, Liu Q, et al.Enhancing the catalytic performance of Pt/C catalysts using steam-etched carbon blacks as a catalyst support[J]. Carbon,2011,49(1):256.
[22] Wang M, Xu F, Xie J.Enhanced carbon corrosion resistance for FEFC Pt/C catalysts using steam-etched carbon blacks as a catalyst support[J]. Electrochim Acta,2012,63:295.
[23] Yasuda K, Nishimura Y.The deposition of ultrafine platinum particles on carbon black by surface ion exchange—Increase in loading amount[J]. Mater Chem Phys,2003,82(3):921.
[24] Xu F, Wang M, Liu Q, et al.Investigation of the carbon corrosion process for polymer electrolyte fuel cell using a rotating disk electrode technique[J]. J Electrochem Soc,2010,157(8):B1138.
[25] Sun X, Zhang Y, Song P, et al.Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction[J]. ACS Catal,2013,3(8):1726.
[26] Jia N, Wang Z, Yang G, et al.Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochem Commun, 2007,9(2):233.
[27] Jun S, Joo S H, Ryoo R, et al.Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. J Am Chem Soc,2000,122(43):10712.
[28] Umar A, Rahman M M, Al-Hajry A, et al.Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures[J]. Talanta,2009,78(1):284.
[29] Zhou M, Guo J, Guo L,et al.Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system[J]. Anal Chem,2008,80(12):4642.
[30] Walcarius A.Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials[J]. Comptes Rendus Chimie,2005,8(3):693.
[31] Adekunle A S, Ozoemena K I.Electrocatalytic oxidation of diethy-laminoethanethiol and hydrazine at single-walled carbon nanotubes modified with prussian blue nanoparticles[J]. Electroanalysis,2010,22(21):2519.
[32] Liang C, Dai S.Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. J Am Chem Soc,2006,128(16):5316.
[33] Bruno M M, Petruccelli M A, Viva F A, et al.Mesoporous carbon supported PtRu as anode catalyst for direct methanol fuel cell: Pola-rization measurements and electrochemical impedance analysis of mass transport[J]. Int J Hydrogen Energy,2013,38(10):4116.
[34] Arbizzani C, Beninati S, Manferrari E, et al.Cryo and xerogel carbon supported PtRu for DMFC anodes[J]. J Power Sources,2007,172(2):578.
[35] Qi J,Jiang L H,Tang Q W,et al.Synthesis of graphitic mesoporous carbons with differentsurface areas and their use in direct methanol fuel cells[J]. Carbon,2012,50(8):2824.
[36] Lee H I, Joo S H, Kim J H, et al.Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbon via strong metal-support interaction[J]. J Mater Chem,2009,19:5934.
[37] Salgado J R C, Quintana J J,Calvillo L, et al.Carbon monoxide and methanol oxidation at platinum catalysts supported on ordered mesoporous carbon: The influence of functionalization of the support[J]. Phys Chem Chem Phys ,2008,10(45):6796.
[38] Guo Y X, He J P, Wang T, et al.Enhanced electrocatalytic activity of platinum supported on nitrogen modified ordered mesoporous carbon[J]. J Power Sources,2011,196(22):9299.
[39] Liu R L, Wu D Q, Feng X L, et al.Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction[J].Angew Chem,2010,49(14):2565.
[40] Lu J, Bo X, Wang H, et al.Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction[J]. Electrochim Acta, 2013,108(1):10.
[41] Iijima S.Helical microtubules of graphic carbon[J]. Nature,1991,354(6348):56.
[42] Yin S B, Zhu Q Q, Qiang Y H, et al.Functionalized carbon nanotubes as Pt catalyst supports in methanol oxidation[J].Chin J Catal,2012,33(2):290.
[43] Murata S,Imanishi M,Hasegawa S, et al.Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J]. J Power Sources,2014,253:104.
[44] Hoa L Q, Vestergaard M C, Yoshikawa H, et al.Functionalized multi-walled carbon nanotubes as supporting matrix for enhanced ethanol oxidation on Pt-based catalysts[J]. Electrochem Commun,2011,13(7):746.
[45] Cheng Y, Jiang S P.Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells[J]. Electrochim Acta,2013,99:124.
[46] Liu Z W, Shi Q Q, Peng F, et al.Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells[J].Electrochem Commun,2012,16(1):73.
[47] Chen Z, Higgins D, Chen Z.Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction[J]. Electrochim Acta,2010,55(16):4799.
[48] Lefèvre M, Proietti E, Jaouen F, et al.Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science,2009,324(5923):71.
[49] Gong K, Du F, Xia Z, et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760.
[50] Geim A K, Novoselov K S.The rise of graphene[J]. Nat Mater,2007,6(3):183.
[51] Chen D, Tang L H, Li J H.Graphene-based materials in electrochemistry[J].Chem Soc Rev, 2010,39(8):3157.
[52] Brownson D A C, Kampouris D K, Banks C E. An overview of graphene in energy production and storage applications[J]. J Power Sources,2011,196(11):4873.
[53] Yoo E J, Okata T, Akita T, et al.Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface[J]. Nano Lett,2009,9(6):2255.
[54] Seger B, Kamat P V.Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells[J]. J Phys Chem C,2009,113(19):7990.
[55] Novoselov K S, Geim A K, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666.
[56] Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. J Phys Chem B,2006,110(17):8535.
[57] Li Y F, Zhou Z, Shen P W, et al.Structural and electronic properties of graphane nanoribbons[J].The J Phys Chem C,2009,113(33):15043.
[58] Chen X M, Su B Y, Wu G H, et al.Platinum nanoflowers supported on graphene oxide nanosheets: Their greensynthesis, growth mechanism, and advanced electrocatalytic properties formethanol oxi-dation[J].J Mater Chem,2012,22(22):11284.
[59] Brodie B C. Sur le poids atomique du graphite[J].Annales de Chimie et de Physique,1860,59:466.
[60] Staudenmaier L. Verfahren zur darstellung der graphitsäure[J]. Eur J Inorg Chem,1898,31(2): 1481.
[61] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc,1958, 80(6):1339.
[62] Dong L, Gari R R S, Li Z, et al. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation[J]. Carbon, 2010,48(3):781.
[63] Hsieh S H, Hsu M C, Liu W L, et al.Study of Pt catalyst on graphene and its application to fuel cell[J]. Appl Surf Sci,2013,277(4):223.
[64] Wietecha M S, Zhu J, Gao G, et al.Platinum nanoparticles anchored on chelating group-modified graphene for methanol oxidation[J]. J Power Sources,2012,198(1):30.
[65] Huang H, Chen Q, He M, et al.A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation[J]. J Power Sources,2013,239:189.
[66] Xin Y, Liu J, Jie X, et al.Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts[J]. Electrochim Acta, 2012,60:354.
[67] Bai J, Zhu Q, Lv Z, et al.Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions[J]. Int J Hydrogen Energy,2013,38(3):1413.
[68] Zhang L P, Xia Z H.Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells[J]. J Phys Chem C,2011,115(22):11170.
[69] Zhong Y L, Mo Z Y, Yang L J, et al.Application of modified graphene for cathode catalysts in fuel cells[J].Progress Chem,2013,25(05):717(in Chinese).钟轶良, 莫再勇, 杨莉君,等. 改性石墨烯用作燃料电池阴极催化剂[J].化学进展,2013, 25(05):717.
[70] Qu L, Liu Y, Baek J, et al.Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano,2010,4(3):1321.
[71] Liang J, Jiao Y, Jaroniec M, et al.Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with sy-nergistically enhanced performance[J]. Angew Chem Int Ed,2012,51(46):11496.
[72] Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2.
[73] Sebastián D, Lázaro M J, Suelves I, et al.The influence of carbon nanofiber support properties on the oxygen reduction behavior in proton conducting electrolyte-based direct methanol fuel cells[J].Int J Hydrogen Energy,2012,37(7):6253.
[74] Duan Q, Wang B, Wang J, et al.Fabrication of a carbon nanofiber sheet as a micro-porous layer for proton exchange membrane fuel cells[J]. J Power Sources,2010,195(24):8189.
[75] Hang B T, Thang D H, Kobayashi E.Fe/carbon nanofiber compo-site materials for Fe-air battery anodes[J]. J Electroanal Chem,2013,704:145.
[76] Wiselin J, Suseela S B, Jalaja B V, et al.A low cost carbon nanofiber based spiral inductor: Inference and implementation[J].Adv Mater Sci Eng,2014(2014):1125.
[77] Rand E, et al.A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid[J]. Biosensors Bioelectron,2013,42C(1):434.
[78] Wu R, Xue Y, Qian X, et al.Pt nanodendrites anchored on bamboo-shaped carbon nanofiber arrays as highly efficient electrocatalyst for oxygen reduction reaction[J]. Int J Hydrogen Energy, 2013,38(36):16677.
[79] Á lvarez G, Alcaide F, et al. Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support[J]. Int J Hydrogen Energy, 2012,37(1):393.
[80] Yin J, Qiu Y J, Yu J J.Porous nitrogen-doped carbon nanofibers as highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. J Electroanal Chem,2013,702(2):56.
[81] Stankovich S, Dikin D A, Piner R D, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558.
[82] Yang S, Shen C, Lu X, et al.Preparation and electrochemistry of graphene nanosheets-multiwalled carbon nanotubes hybrid nanomaterials as Pd electrocatalyst support for formic acid oxidation[J]. Electrochim Acta,2012,62(1):242.
[83] Li Y, Li Y, Zhu E, et al.Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite[J]. J Am Chem Soc,2012,134(30):12326.
[1] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[2] 赵智煌, 何梦雅, 钱建华, 马良, 冯伯文. 柱状活性炭与酸改性球形活性炭对甲苯的吸附研究[J]. 材料导报, 2020, 34(Z1): 531-534.
[3] 张通姗, 徐海萍, 徐世豪, 廖杨科, 熊维. 废弃高抗冲聚苯乙烯高值化再利用的研究进展[J]. 材料导报, 2020, 34(Z1): 557-562.
[4] 纪宪坤, 汪源, 汪苏平, 胡志豪. 酯化改性抗泥型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2020, 34(Z1): 596-600.
[5] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[6] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[7] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[8] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[9] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[10] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[11] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[12] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[13] 胡明玉, 王红英, 刘子航, 胡裕倩. 抑霉菌泥炭藓/硅藻土复合调湿材料的研究[J]. 材料导报, 2020, 34(14): 14051-14056.
[14] 李超, 崔世超, 王岚, 白雪峰. 多聚磷酸/SBS复合改性沥青的高温流变特性[J]. 材料导报, 2020, 34(14): 14057-14062.
[15] 王毓, 赵君, 任俊鹏, 李本秀, 周进康, 李小平. 温敏互穿网络水凝胶/改性膨润土复合吸水保水材料的制备及表征[J]. 材料导报, 2020, 34(12): 12178-12184.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed