Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1716-1720    https://doi.org/10.11896/j.issn.1005-023X.2018.10.028
  材料研究 |
水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能
刘梦梅1, 韩 森1, 潘 俊2, 李 微1, 任万艳1
1 长安大学特殊地区公路工程教育部重点实验室, 西安 710064;
2 中铁二院贵阳勘察设计研究院有限责任公司,贵阳 550002
The Adhesion Performance of a Waterborne Epoxy Resin Emulsified Asphalt: a Study Under High- & Low-temperature and Water-immersion Environments
LIU Mengmei1, HAN Sen1, PAN Jun2, LI Wei1, REN Wanyan1
1 Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064;
2 China Railway Eryuan Engineering Group, Guiyang 550002
下载:  全 文 ( PDF ) ( 3587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以水性环氧树脂(WER)为改性剂,通过其与固化剂的物理-化学交联反应对乳化沥青进行改性,制备成一种理想的路面粘层材料——水性环氧树脂乳化沥青(WEREA)。采用剪切和拉拔试验,在不同温度、层间纹理和浸水时间条件下,将不同WER掺量的WEREA与普通乳化沥青和SBS改性乳化沥青进行对比试验,研究了WEREA的高温、低温和浸水粘结性能。结果显示,在试验研究范围内,随着WER掺量的增加,WEREA的层间性能显著改善;温度越高,粘层材料粘结性越差,但高温、低温条件下,WEREA的抗剪、抗拉强度均大于对照试验组。可以认为,WER通过交联作用有效改善了粘层材料的强度和层间粘附性,减缓了WEREA粘结性随浸水时间延长而降低的速率,显著提高了粘层材料的浸水粘结性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘梦梅
韩 森
潘 俊
李 微
任万艳
关键词:  道路工程  水性环氧树脂  固化剂  乳化沥青  粘结性能  高温  低温  浸水    
Abstract: The present work made a successful endeavor to prepare a favorable pavement adhesive layer material —waterborne epoxy resin emulsified asphalt (WEREA), by modifying the emulsified asphalt through the cross-linking reaction between curing agent and waterborne epoxy resin (WER), the latter of which served as the modifier. We then conducted a comparative analysis with respect to the adhesion performances under high-temperature, low-temperature and water-immersion environments via the shear test and pullout test (with various testing temperature, interlayer texture and water immersion duration) upon the ordinary emulsified asphalt, SBS modified emulsified asphalt, and the resultant WEREAs differing in WER content. The results showed that the interlayer performance of WEREA improves considerably with the increase of WER contents. The higher temperature could lead to the decaying shear strength and pullout strength, both of which are superior to those of the ordinary emulsified asphalt and SBS modified emulsified asphalt. Our experiment suggested the conspicuous positive influence of the WER’s cross-linking effect to the interlayer material’s strength and the interlayer adhesion, and in consequence, the deceleration of the water-immersion-induced decline in WEREA’s adhesion, and the adhesive material’s water stability is improved significantly.
Key words:  road engineering    waterborne epoxy resin    curing agent    emulsified asphalt    adhesion performance    high tempe-rature    low temperature    water immersion
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  U416.217  
基金资助: 国家自然科学基金(51608045)
作者简介:  刘梦梅:女,1993年生,博士研究生,主要从事道路结构与材料方向的研究 E-mail:L6822372@163.com
引用本文:    
刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
LIU Mengmei, HAN Sen, PAN Jun, LI Wei, REN Wanyan. The Adhesion Performance of a Waterborne Epoxy Resin Emulsified Asphalt: a Study Under High- & Low-temperature and Water-immersion Environments. Materials Reports, 2018, 32(10): 1716-1720.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.028  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1716
1 申爱琴.道路工程材料[M].北京:人民交通出版社,2010.
2 Zhang Jiupeng, Zhu Hongbin, Pei Jianzhong, et al. Evaluation of asphalt demulsification and viscosity of modified asphalt emulsion mortar based on gompertz model[J]. Journal of Traffic and Transportation Engineer,2015,15(5):2(in Chinese).
张久鹏,朱红斌,裴建中,等.基于龚帕斯模型的改性乳化沥青胶浆黏度与沥青破乳评价[J].交通运输工程学报,2015,15(5):2.
3 Wang Zhiliu, Liu Quanwei, Yang Hu, et al. The study on curing reaction mechanism of epoxy asphalt by FT-IR[J]. Polymer Mate-rials Science and Engineering,2005,21(3):93(in Chinese).
王治流,刘全伟,杨琥,等.红外光谱法对环氧沥青固化机理的研究[J].高分子材料科学与工程,2005,21(3):93.
4 Yousefi A, Ait-Kadi A, Roy C. Effect of used-tire-derived pyrolytic oil residue on the properties of polymer-modified asphalts[J]. Fuel,2000,79(8):97.
5 Ye Q, Wu S, Li N. Investigation of the dynamic and fatigue properties of fiber-modified asphalt mixtures[J]. International Journal of Fatigue,2009,31(10):1599.
6 Nejad F M, Azarhoosh A, Hamedi G H. Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt—A laboratory study[J]. Road Materials and Pavement Design,2014,15(3):747.
7 Xiao Y. Characteristics of two-component epoxy modified bitumen[J]. Materials and Structures,2011,44(3):612.
8 Yu J, Cong P, Wu S. Laboratory investigation of the properties of asphalt modified with epoxy resin[J]. Journal of Applied Polymer Science,2010,113(6):3559.
9 Chen Zhaojun. Study on pavement performance and overlay techno-logy of bridge deck epoxy coating[J]. Highway Engineering,2014(4):146(in Chinese).
陈兆军.桥面环氧覆层路用性能及加铺技术研究[J].公路工程,2014(4):146.
10 Qian Yuchun, Chen Shuanfa, Cong Peiliang, et al. Curing kinetical charateristics of epoxy resin system[J]. Journal of Zhengzhou University (Engineering Science),2012,33(3):96(in Chinese).
钱玉春,陈拴发, 丛培良,等.环氧树脂体系固化反应动力学特征[J].郑州大学学报(工学版),2012,33(3):96.
11 Sun Xiaoli, Zhang Xiaoning. Experimental study on high perfor-mance micro-surfacing[J]. Journal of Tongji University (Natural Science),2012,40(6):868(in Chinese).
孙晓立,张肖宁.高性能微表处的室内试验研究[J].同济大学学报(自然科学版),2012,40(6):868.
12 Zhang Qing, Hao Peiwen, Bai Zhengyu. Properties of emulsified asphalt concrete modified with waterborne epoxy resin[J]. Road Machinery and Construction Mechanization,2016,33(1):55(in Chinese).
张庆,郝培文,白正宇.水性环氧树脂改性乳化沥青混凝土性能研究[J].筑路机械与施工机械化,2016,33(1):55.
13 He Yuanhang, Zhang Rognhui. Application of emulsified asphalt modified with water-epoxy resin to maintenance of highway[J].New Building Materials,2007,34(5):38(in Chinese).
何远航,张荣辉.水性环氧树脂改性乳化沥青在公路养护中的应用[J].新型建筑材料,2007,34(5):38.
14 Chang Yanting, Chen Zhongda, Niu Xiaohu, et al. Test of shear resistance of modified emulsified asphalt by waterborne epoxy resin[J]. Journal of Jiangsu University (Natural Science Edition),2017,38:222.
15 邓学钧.路基路面工程.第3版[M].北京:人民交通出版社,2008.
16 Jianying Yu, Cong P, Wu S, et al. Curing behavior of epoxy asphalt[J]. Journal of Wuhan University of Technology(Materials Science Edition),2009,24(3):463.
17 Zheng Chuanfeng, Feng Yupeng, Guo Xuedong, et al. Effect of filler-to-bitumen ratio on low-temperature cohesive strength of asphalt motar[J]. Journal of Jilin University(Engineering and Technology Edition),2016,46(2):427(in Chinese).
郑传峰,冯玉鹏,郭学东,等.粉胶比对沥青胶浆低温黏结强度的影响[J].吉林大学学报(工学版),2016,46(2):427.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[3] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[4] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[5] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[6] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[7] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[8] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[9] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[10] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[11] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[12] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[13] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[14] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[15] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed