Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1721-1729    https://doi.org/10.11896/j.issn.1005-023X.2018.10.029
  计算模拟 |
集成过程分析技术和群体粒数衡算模拟的药物材料造粒过程决策支持系统
李亚军1,王学重1,2
1 华南理工大学化学与化工学院,广东省创新制药工艺和过程控制工程技术研究中心,广州 510640;
2 School of Chemical and Process Engineering, University of Leeds, Leeds S29JT
A Decision Support System Integrating PAT and Population Balance Models for Pharmaceutical Material Granulation
LI Yajun1,WANG Xuezhong1,2
1 Engineering Center for Pharmaceutical Process Innovation and Advanced Control of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640;
2 School of Chemical and Process Engineering, University of Leeds, Leeds S29JT
下载:  全 文 ( PDF ) ( 5600KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过集成在线近红外光谱仪、实时图像采集与处理系统和群体粒数衡算模型,开发了高剪切湿法造粒过程的决策支持系统(Decision support system, DSS)。利用近红外光谱仪和图像系统实时测量多个过程变量和产品质量指标,包括粉体混合均匀度、颗粒粘合剂含量、粒径分布以及团聚、破裂行为等,能够快速确定过程操作空间。同时,由过程分析平台得到的信息经分析处理后输入工艺过程模型模块,用于估算和校准群体粒数衡算模型中的团聚和破裂速率常数,以此持续提高模型精度。另一方面,模型可以指导实验体系寻找最优操作空间。该决策支持系统成功应用到了以微晶纤维素和甘露醇为原料,3%聚乙烯吡咯烷酮水溶液为粘合剂的高剪切湿法造粒过程中,对两个粘合剂喷淋速率下的造粒过程进行监测。DSS认定粘合剂喷淋过程分为四个阶段:润湿期、成核期、快速生长期和慢速生长期。不同阶段之间的分界点与粘合剂喷淋速率有关。在较高喷淋速率下,颗粒进入成核期和快速生长期所需粘合剂较少,但是对颗粒最终粒径无明显影响。此外,通过近红外光谱测定混合均匀度,确定了粉体的混合终点。该DSS系统将基于过程分析技术的高效实验和过程模拟结合,可以快速确定操作空间以及颗粒的生长行为,实时提供大量数据用于持续提高模型精确度和稳健性,提高造粒过程的优化效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚军
王学重
关键词:  造粒  近红外光谱  成像  群体粒数衡算模型  粒度分布  团聚    
Abstract: A decision support system (DSS) is developed for a high shear wet granulation process that has integrated near infrared spectroscopy (NIR), on-line imaging and image analysis, and population balance (PB) models. The integrated PAT (process analytical technology) based on NIR and imaging allows multiple process variables and granule properties to be characterized in real-time, including mixing uniformity, binder content, granule size and size distribution, as well as granule growth, aggregation and breakage, and facilitates rapid identification of the operational spaces. The PAT measurements also provide data for estimation of the rate constants of kinetics kernels in the PB models and continuous improvement of the models. The models on the other hand can be used to guide PAT based experiments in searching for optimum operational space. A case study applying the DSS to the granulation of microcrystalline cellulose and mannitol powders using 3% aqueous solution of polyvinylpyrrolidone as the binder is described. The spraying period has shown to experience four phases: wetting, nucleation, rapid growth and moderate growth, but the boundaries separating the phases were different depending on the spray rate. At a high spraying rate, the binder contents at which the growth stepped into nucleation regime and rapid growth regime were lower. However, it didn’t show significant influence on the median size of the granules formed. In addition, the mixing uniformity was monitored using NIR, allowing identification of the end point of powder mixing. The DSS combined the effective experiments based on PAT with process modelling, which enabled rapid characterization of the operational spaces and granule growth behavior. It also provided sufficient data collected real-time during the process to improve the robust and accuracy of the model continuously, consequently increasing the efficiency of optimization in granulation.
Key words:  granulation    near infrared spectrum    imaging    population balance equation    particle size distribution    aggregation
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB32  
  TQ460.6+2  
基金资助: 国家自然科学基金(91434126;61633006);广东省应用型科技研发专项资金(2015B020232007);广东省自然科学基金(2014A030313228;2017A030310262);中央高校基本科研业务费(2017MS092)
通讯作者:  王学重:通信作者,男,博士,教授,研究方向为制药和化工过程在线测量、模拟和控制 E-mail:xuezhongwang@scut.edu.cn;x.z.wang@leeds.ac.uk   
作者简介:  李亚军:男,1989年生,博士研究生,研究方向为化工系统工程
引用本文:    
李亚军,王学重. 集成过程分析技术和群体粒数衡算模拟的药物材料造粒过程决策支持系统[J]. 《材料导报》期刊社, 2018, 32(10): 1721-1729.
LI Yajun,WANG Xuezhong. A Decision Support System Integrating PAT and Population Balance Models for Pharmaceutical Material Granulation. Materials Reports, 2018, 32(10): 1721-1729.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.029  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1721
1 Iveson S M, Litster J D, Hapgood K, et al. Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review[J].Powder Technology,2001,117(1-2):3.
2 Kumar A, Gernaey K V, De Beer T, et al. Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production—A critical review[J].European Journal of Pharmaceutics and Biopharmaceutics,2013,85(3):814.
3 Bjorn I N, Jansson A, Karlsson M, et al. Empirical to mechanistic modelling in high shear granulation[J].Chemical Engineering Science,2005,60(14):3795.
4 Ramachandran R, Immanuel C D, Stepanek F, et al. A mechanistic model for breakage in population balances of granulation: Theoretical kernel development and experimental validation[J].Chemical Engineering Research & Design,2009,87(4):598.
5 Chaudhury A, Wu H Q, Khan M, et al. A mechanistic population balance model for granulation processes: Effect of process and formulation parameters[J].Chemical Engineering Science,2014,107(14):76.
6 Capes C E, Danckwerts P V. Granule formation by the agglomeration of damp powders-part Ⅰ: The mechanism of granule growth[J].Transactions of the Institution of Chemical Engineers,1965,43:116.
7 Wauters P A L, van de Water R, Litster J D, et al. Growth and compaction behaviour of copper concentrate granules in a rotating drum[J].Powder Technology,2002,124(3):230.
8 Knight P C, Johansen A, Kristensen H G, et al. An investigation of the effects on agglomeration of changing the speed of a mechanical mixer[J].Powder Technology,2000,110(3):204.
9 Vonk P, Guillaume C P F, Ramaker J S, et al. Growth mechanisms of high-shear pelletisation[J].International Journal of Pharmaceutics,1997,157(97):93.
10 Iveson S M, Litster J D. Growth regime map for liquid-bound gra-nules[J].AIChE Journal,1998,44(7):1510.
11 Hounslow M J, Pearson J M K, Instone T. Tracer studies of high-shear granulation: Ⅱ. Population balance modeling[J].AIChE Journal,2001,47(9):1984.
12 Hounslow M J. The population balance as a tool for understanding particle rate processes[J].KONA Powder and Particle Journal,1998,16:179.
13 Pandya J D, Spielman L A. Floc breakage in agitated suspensions: Effect of agitation rate[J].Chemical Engineering Science,1983,38(12):1983.
14 Soos M, Sefcik J, Morbidelli M. Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering[J]. Chemical Engineering Science,2006,61(8):2349.
15 Hounslow M J, Ryall R L, Marshall V R. A discretized population balance for nucleation, growth, and aggregation[J].AIChE Journal,1988,34(11):1821.
16 Zhou Z L, Li J, Huang S Q, et al. Development of chemometric modelling in the application of NIR to the quality control of Chinese herbal medicine:Literature review and future perspectives[J]. Chemical Industry and Engineering Progress,2016,35(6):1627(in Chinese).
周昭露,李杰,黄生权,等.近红外光谱技术在中药质量控制应用中的化学计量学建模:综述和展望[J].化工进展,2016,35(6):1627.
17 De Beer T, Burggraeve A, Fonteyne M, et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes[J].International Journal of Pharmaceutics,2011,417(1):32.
18 EI-Hagrasy A S, Delgado-Lopez M, Drennen J K. A process analy-tical technology approach to near-infrared process control of pharmaceutical powder blending: Part Ⅱ: Qualitative near-infrared models for prediction of blend homogeneity[J].Journal of Pharmaceutical Sciences,2006,95(2):407.
19 Rantanen J, Jrgensen A, Rsnen E, et al. Process analysis of fluidized bed granulation[J].Aaps Pharmscitech,2001,2(4):13.
20 Rantanen J, Wikstrom H, Turner R, et al. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes[J].Analytical Chemistry,2005,77(2):556.
21 Alcala M, Blanco M, Bautista M, et al. On-line monitoring of a granulation process by NIR spectroscopy[J].Journal of Pharmaceutical Sciences,2010,99(1):336.
22 Papp M K, Pujara C P, Pinal R. Monitoring of high-shear granulation using acoustic emission: Predicting granule properties[J].Journal of Pharmaceutical Innovation,2008,3(2):113.
23 Watano S, Numa T, Miyanami K, et al. A fuzzy control system of high shear granulation using image processing[J].Powder Technology,2001,115(2):124.
24 Watano S, Numa T, Miyanami K, et al. On-line monitoring of gra-nule growth in high shear granulation by an image processing system[J].Chemical and Pharmaceutical Bulletin,2000,48(8):1154.
25 Watano S. Direct control of wet granulation processes by image processing system[J].Powder Technology,2001,117(1):163.
26 Lan Z L, Liang S, Tian W Y. Particle analysis of cement based on digital microscopic image processing [J]. Materials Review,2008,22(10):88(in Chinese).
蓝章礼,梁爽,田文玉.基于数字显微图像处理的水泥粒度分析[J].材料导报,2008,22(10):88.
27 De Anda J C, Wang X Z, Lai X, et al. Classifying organic crystals via in-process image analysis and the use of monitoring charts to follow polymorphic and morphological changes[J].Journal of Process Control,2005,15(7):785.
28 Wan J, Ma C Y, Wang X Z. A method for analyzing on-line video images of crystallization at high-solid concentrations[J].Particuology,2008,6(1):9.
29 Ennis B J, Tardos G, Pfeffer R. A microlevel-based characterization of granulation phenomena[J].Powder Technology,1991,65(1):257.
30 Benali M, Gerbaud V, Hemati M. Effect of operating conditions and physico-chemical properties on the wet granulation kinetics in high shear mixer [J]. Powder Technology,2009,190(1):160.
31 Chaudhury A, Barrasso D, Pandey P, et al. Population balance model development, validation, and prediction of CQAs of a high-shear wet granulation process:Towards QbD in drug product pharmaceutical manufacturing[J].Journal of Pharmaceutical Innovation,2014,9(1):53.
[1] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[2] 王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
[3] 黄京立, 侯杰, 郑沛祺, 王嘉伟, 陶文宏, 段广彬, 张秀芝. 粉煤灰-矿渣基免烧人造轻集料的制备及性能研究[J]. 材料导报, 2024, 38(13): 23010034-9.
[4] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[5] 李佳佳, 张瑞龙, 张忠平. 亚铁离子荧光探针研究进展[J]. 材料导报, 2023, 37(2): 21030055-8.
[6] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[7] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[8] 叶舒岳, 冯雅丽, 史海斌. 智能响应型小分子探针在肿瘤诊疗方面的研究进展[J]. 材料导报, 2022, 36(3): 21120202-15.
[9] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[10] 王信刚, 刘世成, 雷为愉, 张晨阳. 石蜡相变微胶囊的热学性能与红外隐身性能[J]. 材料导报, 2022, 36(24): 21090229-5.
[11] 初燕芳, 张琳, 谢彬, 严能, 何俊杰, 李靖. 高能球磨破碎铁掺杂δ-MnO2对其电容提升的机理研究[J]. 材料导报, 2022, 36(20): 22010246-7.
[12] 李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
[13] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[14] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[15] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed