Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1730-1736    https://doi.org/10.11896/j.issn.1005-023X.2018.10.030
  计算模拟 |
氟橡胶在碱性环境中脱氟化氢反应机理及其结构
李东翰,廖明义
大连海事大学交通运输工程学院,大连116026
Dehydrofluorination Mechanisms and Structures of Fluoroelastomers in Alkaline Environments
LI Donghan, LIAO Mingyi
Transportation Engineering College, Dalian Maritime University, Dalian 116026
下载:  全 文 ( PDF ) ( 3889KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究26型氟橡胶 (偏氟乙烯-六氟丙烯二元共聚物)和246型氟橡胶(偏氟乙烯-四氟乙烯-六氟丙烯三元共聚物)在碱性环境中所发生的反应,本文对其反应机理进行了系统的讨论。采用红外(FTIR)、氢谱 (1H-NMR)和氟谱核磁(19F-NMR)对氟橡胶反应前、后的分子链结构进行了分析,并对不同序列结构双键及羟基含量进行了计算。结果表明,26型和246型氟橡胶在碱性环境中发生脱氟化氢反应时,会伴随着双键重排及氧化反应的发生。其中,26型氟橡胶遵循以Zaitsev规则消除反应为主、Hofmann规则消除反应为辅的脱氟化氢反应,在分子链中5个位置出现了双键;而246型氟橡胶则与之相反,遵循以Hofmann规则消除反应为主、Zaitsev规则消除反应为辅的脱氟化氢反应,在分子链中7个位置出现了双键;两种氟橡胶中遵循Hofmann规则进行消除反应所产生的双键会被氧化为羟基;相同条件下,反应后246型氟橡胶的双键和羟基含量均高于26型氟橡胶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李东翰
廖明义
关键词:  氟橡胶    脱氟化氢  反应机理  结构    
Abstract: In order to reveal how the dehydrofluorination of poly(VDF-co-HFP) copolymer and poly(VDF-ter-HFP-ter-TFE) terpolymer takes place in alkaline environment, the reaction mechanisms of different fluoroelastomers were studied systematically in this paper. Not only the chain structures of fluoroelastomers, but also the sequence types and contents of double bonds and other oxygen-containing groups of products were all analyzed and investigated by Attenuated total reflectance/Fourier transform infrared (ATR-FTIR),1H nuclear magnetic resonance (NMR),19F-NMR spectroscopy. The results revealed that when two kinds of fluo-roelastomers exist in alkaline environment, the dehydrofluorination would accompain with rearrangement reaction and oxidation reaction. The dehydrofluorination of poly(VDF-co-HFP) copolymer was mainly conformed to Zaitsev’s rule and Hofmann’s rule supplemented, the double bonds generated in five positions of molecular chains. In contrast, the dehydrofluorination of poly(VDF-ter-HFP-ter-TFE) terpolymer was opposite, which was mainly conformed to Hofmann’s rule and Zaitsev’s rule supplemented, the double bonds generated in seven positions of molecular chains. Furthermore, with the oxidation reaction occurring, the sequence types of double bonds which were conformed to Hofmann’s rule would be converted to hydroxyl groups. Under the same conditions, the contents of double bonds and hydroxyl of poly(VDF-ter-HFP-ter-TFE) terpolymer were higher than that of poly(VDF-co-HFP) copolymer after the reaction.
Key words:  fluoroelastomer    alkali    dehydrofluorination    mechanism    structure
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TQ333.93  
基金资助: 国家国际科技合作专项资助项目(2015DFR40500)
通讯作者:  廖明义:男,1962年生,博士,教授,博士研究生导师,主要从事新型功能高分子材料、元素杂化聚合物及氟、硅聚合物的合成和应用等研究 E-mail:liaomy2000@sohu.com   
作者简介:  李东翰:男,1987年生,博士研究生,主要从事含氟聚合物的合成、官能化及其性能评价等研究
引用本文:    
李东翰,廖明义. 氟橡胶在碱性环境中脱氟化氢反应机理及其结构[J]. 《材料导报》期刊社, 2018, 32(10): 1730-1736.
LI Donghan, LIAO Mingyi. Dehydrofluorination Mechanisms and Structures of Fluoroelastomers in Alkaline Environments. Materials Reports, 2018, 32(10): 1730-1736.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.030  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1730
1 Robert C K. Handbook of specialty elastomers[M]. New York:Taylor & Francis Group,2008:133.
2 Maclachlan J D. Fluorocarbon elastomers:A technical review[J]. Polymer-plastics Technology and Engineering,1978,11:41.
3 Ameduri B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends[J]. Chemical Reviews,2009,109:6632.
4 Abdelhamid M I, Aboelwafa A M, Elhadidy H, et al. Investigation of the structure and piezoelectricity of poly(vinylidene fluoride-trifluroethylene) copolymer doped with different dyes[J]. International Journal of Polymeric Materials,2012,61:505.
5 Ameduri B. Controlled radical (co)polymerization of fluoromonomers[J]. Macromolecules,2010,43:10163.
6 Vijayakumar G, Karthick S N, Paramasivam R, et al. Morphology and electrochemical properties of P(VDF-HFP)/MgO-based compo-site microporous polymer electrolytes for Li-ion polymer batteries[J]. Polymer-plastics Technology and Engineering,2012,51:1427.
7 Li D H, Qi S C, Zhang X A, et al. Preparation, functionalization and properties of low molecular fluoropolymers[J]. Progress in Chemistry,2016,28(5):673 (in Chinese).
李东翰,齐士成,张孝阿,等.低分子量含氟聚合物的制备、官能化及特性[J].化学进展,2016,28(5):673.
8 Anilkumar R, Burton D J. A highly efficient room temperature non-organometallic route for the synthesis of α,β,β-trifluorostyrenes by dehydrohalogenation[J]. Tetrahedron Letter,2003,44:6661.
9 Li J, Lu Y F, Liu Y, et al. Synthesis, characterization, curing and properties of carboxyl-terminated liquid fluoropolymers[J]. Polymer-plastics Technology and Engineering,2014,53:46.
10 Schmiegel W W. Crosslinking of elastomeric vinylidene fluoride copolymers with nucleophiles[J]. Angewandte Makromolekulare Chemie,1979,77:39.
11 Mitra S, Siahkali A G, Kingshott P, et al. Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment[J]. Journal of Polymer Science Part A: Polymer Chemistry,2004,42:6216.
12 Mitra S, Siahkali A G, Kingshott P. Chemical degradation of fluoroe-lastomer in an alkaline environment[J]. Polymer Degradation and Stability,2004,83:195.
13 Smith M B, March J. March’s advanced organic chemistry[M]. New York: John Wiley & Sons,2001:620.
14 Feit N I, Saunders Jr W H. Mechanisms of elimination reactions. XV. Effect of base, solvent, and structure on product ratios in elimi-nation reactions of some quaternary ammo-nium salts[J]. Journal of the American Chemical Society,1970,92:5615.
15 Gent B B, McKenna J. Stereochemical investigation of cyclic bases. Part IV. Hofmann degradation of 6α-and 6β-cholestanyltrimethylammonium salts[J]. Journal of the Chemical Society,1959,42:137.
16 Hughes E D, Wilby J. Mechanism of elimination reactions. Part XXII. Anomalous elimination from the trimethylneomenthylammo-nium ion[J]. Journal of the Chemical Society, DOI:10.1039/jr96000040941960.
17 Rossa G J, Watts J F, Hill M P, et al. Surface modification of poly(vinylidene fluoride) by alkaline treatment 1. The degradation me-chanism[J]. Polymer,2000,41:1685.
18 李东翰,廖明义.不饱和含氟聚合物的制备方法:中国,106117395A[P].2016-06-23.
19 Saint L R, Manseri A, Ameduri B, et al. Synthesis and properties of novel fluorotelechelic macrodiols containing vinylidene fluoride, hexafluoropropene and chlorotrifluoroethylene[J]. Macromolecules,2002,35:1524.
20 Taguet A, Ameduri B, Boutevin B. Grafting of commercially available amines bearing aromatic rings onto poly(vinylidene-co-hexafluo-ropropene) copolymers[J]. Journal of Polymer Science Part A: Polymer Chemistry,2006,44:1855.
21 Ross G J, Watts J F, Hill M P, et al. Surface modification of poly(vinylidene fluoride) by alkaline treatment Part 2. Process modification by the use of phase transfer catalysts[J]. Polymer,2001,42:403.
22 Li D H, Liao M Y. Dehydrofluorination mechanism, structure and
thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE) terpolymer) in alkaline environment[J]. Journal of Fluorine Chemistry,2017,201:55.
23 Souzy R, Ameduri B, Ahsen S V, et al. Use of bis(trifluoromethyl)peroxy dicarbonate as initiator in the radical homopolymerisation of vinylidene fluoride (VDF) and copolymerisation of VDF with hexafluoropropylene[J]. Journal of Fluorine Chemistry,2003,123:85.
24 Souzy R, Boutevin B, Ameduri B. Synthesis and characterizations of novel proton-conducting fluoropolymer electrolyte membranes based on poly(vinylidene fluoride-ter-hexafluoropropylene-ter-α-trif-luoromethacrylic acid) terpolymers grafted by aryl sulfonic acids[J]. Macromolecules,2012,4:3145.
25 Pianca M, Bonardelli P, Tat M, et al. Composition and sequence distribution of vinylidene fluoride copolymer and terpolymer fluoroelastomers. Determination by19F nuclear magnetic resonance spectroscopy and correlation with some properties[J]. Polymer,1987,28:224.
26 Valade D, Boschet F, Ameduri B. Synthesis and modification of alternating copolymers based on vinyl ethers, chlorotrifluoroethylene, and hexafluoropropylene[J]. Macromolecules,2009,42:7689.
27 Kader M A, Bhowmick A K. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates[J]. Polymer Degradation and Stability,2003,79:283.
28 Silverstein R M, Webster F X, Kiemle D J. Spectrometric identification of organic compounds[M]. New York: John Wiley & Sons,2005:191.
29 Li D H, Liao M Y. Preparation of telechelic hydroxyl low molecular weight fluoropolymers[J]. Key Engineering Materials,2017,753:93.
30 Yang Z Y. Addition reaction of halogens to vinyl(pentafluorocyclopropanes): Competition between a radical addition and an electrophilic addition[J]. Journal of Organic Chemistry,2003,68:5419.
31 Cheburkov Y, Moore G G I. 2,2-Dihydroperfluoropentane (HFC 4310 mf) synthesis from HFP dimmer[J]. Journal of Fluorine Chemistry,2003,123:227.
32 Paciorek K L, Mitchell L C, Lenk C T. Mechanism of amine crosslinking of fluoroelastomers. I. Solution studies[J]. Journal of Polymer Science,1960,45:405.
33 Krespan C G, Dixon D A. Fluoroolefin condensation catalyzed by aluminum chlorofluoride[J]. Journal of Fluorine Chemistry,1996,77:117.
34 Taguet A, Sauguet L, Ameduri B. Fluorinated cotelomers based on vinylidene fluoride (VDF) and hexafluoropropene (HFP): Synthesis, dehydrofluorination and grafting by amine containing an aroma-tic ring[J]. Journal of Fluorine Chemistry,2007,128:619.
35 Pianca M, Barchiesi E, Esposto G, et al. End groups in fluoropolymers[J]. Journal of Fluorine Chemistry,1999,95:71.
36 Taguet A, Ameduri B, Boutevin B. Crosslinking of vinylidene fluo-ride-containing fluoropolymers[J]. Advances in Polymer Science,2005,184:127.
37 Brame E G. Spectra-structure correlations in nuclear spin resonances of fluorine-19[J]. Analytical Chemistry,1962,34:591.
[1] 杨鸿睿, 刘洪蕊, 王结良, 祖梅, 徐遨蓝. 大跨度伪装遮障材料技术研究进展[J]. 材料导报, 2025, 39(3): 23110159-6.
[2] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[3] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[4] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[5] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[8] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[9] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[10] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[11] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[12] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[13] 王迎迎, 刘永欣, 沈倩, 付婵, 余昌敏. 磁分离技术和纳米金比色法用于嗜碱性粒细胞活化试验研究[J]. 材料导报, 2024, 38(9): 23030124-7.
[14] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[15] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed