Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23010034-9    https://doi.org/10.11896/cldb.23010034
  无机非金属及其复合材料 |
粉煤灰-矿渣基免烧人造轻集料的制备及性能研究
黄京立, 侯杰, 郑沛祺, 王嘉伟, 陶文宏, 段广彬, 张秀芝*
济南大学材料科学与工程学院,济南 250022
Preparation and Properties of Fly Ash-Ground Granulated Blast Furnace Slag Based Artificial Lightweight Aggregate
HUANG Jingli, HOU Jie, ZHENG Peiqi, WANG Jiawei, TAO Wenhong, DUAN Guangbin, ZHANG Xiuzhi*
School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
下载:  全 文 ( PDF ) ( 21931KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为减轻对自然资源的开采,合理有效地利用粉煤灰(FA),本工作以FA和磨细粒化高炉矿渣(GGBFS)为原料制备了碱激发免烧人造轻集料(CAALA),研究了原材料配合比对CAALA的造粒效率、物理性能以及抗冻融性能的影响,并分析了CAALA的碱溶出。结果表明,FA掺量对CAALA的性能具有显著影响,当FA掺量增加,水化产物中C-A-S-H凝胶量减少,CAALA中有害孔(>200 nm)的占比增加;结合造粒效率与筒压强度,FA与GGBFS最佳质量比为1∶1,此时CAALA的造粒效率为92.01%、堆积密度为1 072 kg/m3、1 h吸水率为10.8%,筒压强度为14.65 MPa,24 h溶出液的pH为11.87,经过15次冻融循环后的质量损失率为3.34%,可供C30等级以下的非结构混凝土使用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄京立
侯杰
郑沛祺
王嘉伟
陶文宏
段广彬
张秀芝
关键词:  人造轻集料  圆盘造粒机  碱激发材料  筒压强度  耐久性    
Abstract: To minimize the depletion of natural resources and optimize the use of fly ash (FA), the manufacture of cold-bonded alkali-activated artificial lightweight aggregates (CAALA) with fly ash (FA) and ground granulated blast furnace slag (GGBFS) were designed and fabricated. This study examined the impact of raw material proportioning on the properties of CAALA, specifically pelletization efficiency, physical properties, mechanical properties, and freeze-thaw resistance capacity. Then, the alkaline dissolution of CAALA was analyzed. Additionally, the analysis revealed that the increase in FA content led to a decrease in hydration products of C-A-S-H gels and an increase in harmful pores (>200 nm). When the optimal mass ratio of FA and GGBFS was 1∶1, CAALA achieved a pelletization efficiency of 92.01%, a loose bulk density of 1 072 kg/m3 and a water absorption of 10.8% within 1 h. Additionally, it shows a cylinder compressive strength of 14.65 MPa, a pH of dissolution solution after 24 hours is 11.87 and a mass loss rate of 3.34% after 15 freeze-thaw cycles. Therefore, the use of FA in CAALA may be a suitable method for preparing non-structural concrete below C30 grade.
Key words:  artificial lightweight aggregate    disc pelletizer    alkali activated material    cylinder compressive strength    durability
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TU526  
基金资助: 国家自然科学基金(52178211);济南市新高校20条院所科研带头人工作室 (2021GXRC087)
通讯作者:  *张秀芝,济南大学材料科学与工程学院教授、博士研究生导师。1997年山东建筑材料学院高分子材料专业本科毕业,2004年南京工业大学应用化学专业毕业,2010年东南大学材料学专业博士毕业。目前主要从事高性能水泥基材料、固体废弃物建材资源化利用等方面的研究工作,以第一和通信作者在国内外学术期刊发表论文50余篇,其中SCI、EI收录30余篇。mse_zhangxz@ujn.edu.cn   
作者简介:  黄京立,2016年9月于济南大学获得工学学士学位。现为济南大学材料科学与工程学院硕士研究生,在张秀芝教授的指导下进行研究。目前主要研究领域为大宗固体废弃物综合利用。
引用本文:    
黄京立, 侯杰, 郑沛祺, 王嘉伟, 陶文宏, 段广彬, 张秀芝. 粉煤灰-矿渣基免烧人造轻集料的制备及性能研究[J]. 材料导报, 2024, 38(13): 23010034-9.
HUANG Jingli, HOU Jie, ZHENG Peiqi, WANG Jiawei, TAO Wenhong, DUAN Guangbin, ZHANG Xiuzhi. Preparation and Properties of Fly Ash-Ground Granulated Blast Furnace Slag Based Artificial Lightweight Aggregate. Materials Reports, 2024, 38(13): 23010034-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010034  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23010034
1 Ewelina Grabias-Blicharz, Wojciech Franus. Science of the Total Environment, 2022, 860, 160529.
2 Hou H M, Su L J, Guo D F, et al. Journal of Cleaner Production, 2023, 383, 135449.
3 Mehta P K, Monteiro P. Concrete: microstructure, properties, and materials, The McGraw-Hill Companies, US, 2013, pp.253.
4 Syed Minhaj Saleem Kazmi, Muhammad Junaid Munir, Wu Yufei, et al. Cold Regions Science and Technology, 2020, 178, 103126.
5 Qian L P, Xu L Y, Yazan Alrefaei, et al. Resources, Conservation and Recycling, 2022, 177, 105971.
6 Feras Tajra, Mohamed Abd Elrahman, Dietmar Stephan. Construction and Building Materials, 2019, 225, 29.
7 Gomathi P, Sivakumar A. ARPN Journal of Engineering and Applied Sciences, 2012, 7(11), 1523.
8 Feras Tajra, Mohamed Abd Elrahman, Sang-Yeop Chung, et al. Construction and Building Materials, 2018, 179, 220.
9 Wang D Y, Li F, Shi K K. Journal of Chongqing Technol and Business University (Natural Science Edition), 2023, 40(5), 55(in Chinese).
王东阳, 李芳, 施可可. 重庆工商大学学报(自然科学版), 2023, 40(5). 55.
10 Dong B Q, Chen C F, Wei G Q, et al. Construction and Building Materials, 2022, 344, 128268.
11 Ornpiya Aungatichart, Nithiwach Nawaukkaratharnant, Thanakorn Wasanapiarnpong. Materials Letters, 2022, 327, 133019.
12 Mehmet Gesolu, Erhan Güneyisi, Hatice Öznur Öz. Materials and Structures, 2012, 45(10), 1535.
13 Ubolluk Rattanasak, Prinya Chindaprasirt. Minerals Engineering, 2009, 22(12), 1073.
14 Puput Risdanareni, Katrin Schollbach, Wang Jianyun, et al. Construction and Building Materials, 2020, 259, 119832.
15 Hou Y F. Fly Ash based geopolymer, Chemical Industry Press, China, 2014, pp.25 (in Chinese).
侯云芬. 粉煤灰基地质聚合物, 化学工业出版社, 2014, pp.25.
16 Tao Z d, Zheng S H. Power technology and equipment, Chemical Industry Press, China, 2014, pp.273(in Chinese).
陶珍东, 郑少华. 粉体工程与设备, 化学工业出版社, 2014, pp.273.
17 Liu J P, Li H, Tian Q, et al. Journal of Southeast University (Natural Science Edition), 2013, 43(5), 1074 (in Chinese).
刘加平, 李华, 田倩, 等. 东南大学学报(自然科学版), 2013, 43(5), 1074.
18 Singh B, Ishwarya G, Gupta M, et al. Construction and Building Materials, 2015, 85, 78.
19 Le Anh-tuan Bui, Chao-lung Hwang, Chun-tsun Chen, et al. Construction and Building Materials, 2012, 35, 1056.
20 Singh B, Ishwarya G, Gupta M, et al. Construction and Building Materials, 2015, 85, 78.
21 Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Cement and Concrete Research, 2011, 41(9), 923.
22 García Lodeiro I, Macphee D E, Palomo A, et al. Cement and Concrete Research, 2009, 39(3), 147.
23 Tanakorn Phoo-ngernkham, Akihiro Maegawa, Naoki Mishima, et al. Construction and Building Materials, 2015, 91, 1.
24 Zhou X L, Chen Y L, Liu C W, et al. Construction and Building Materials, 2022, 341, 127844.
25 Xu L Y, Qian L P, Huang B T, et al. Journal of Cleaner Production, 2021, 315, 128200.
26 Muralidhar Kamath, Shreelaxmi Prashant, Mithesh Kumar. Construction and Building Materials, 2021, 277, 122323.
27 Young-Keun Cho, Sung-Won Yoo, Sang-Hwa Jung, et al. Construction and Building Materials, 2017, 145, 253.
28 Chen X, Zhang J C, Lu M Y, et al. Construction and Building Materials, 2022, 314(B), 125650.
29 Rosnita Mohanmed, Rafiza Abd Razak, Mohd Mustafa Al Bakri Abdullah, et al. Journal of Non-Crystalline Solids, 2021, 553, 120519.
30 Mohsen Ben Haha, Barbara Lothenbach, Gwenn Le Saout, et al. Cement and Concrete Research, 2011, 41(9), 955.
31 Ma F, Zhou L Z, Luo Y, et al. Journal of the Indian Chemical Society, 2022, 99(8), 100602.
32 Liu S H, Wang L, Yu B Y. Construction and Building Materials, 2019, 214, 9.
33 Wu Z W. Journal of the Chinese Ceramic Society, 1979(3), 262 (in Chinese).
吴中伟. 硅酸盐学报, 1979(3), 262.
34 Ding C, Sun T, Shui Z H, et al. Construction and Building Materials, 2022, 311, 127307.
35 Mohsen Ben Haha, Barbara Lothenbach, Gwenn Le Saout, et al. Cement and Concrete Research, 2012, 42(1), 74.
36 Ricarda Täenzer, Anja Buchwald, Dietmar Stephan. Materials and Structures, 2015, 48(3), 629.
37 Kostas Komnitsas, Dimitra Zaharaki. Minerals Engineering, 2007, 20(14), 1261.
38 Zhang D K, Long W H. Cement, 2018, 490(3), 1(in Chinese).
张大康, 龙卫红. 水泥, 2018, 490(3), 1.
39 Haghi P K, Chapoy A, Peirera L M C, et al. International Journal of Greenhouse Gas Control, 2017, 66, 190.
40 Mehta P K, Monteiro P. Concrete, microstructure, properties, and materials, The McGraw-Hill Companies, US, 2013, pp.82.
41 Sara Bahafid, Max Hendriks, Stefan Jacobsen, et al. Cement and Concrete Research, 2022, 157, 106803.
42 Shi C C. Alkali-activated cements and concretes, Chemical Industry Press, China, 2008, pp.158(in Chinese).
史才军. 碱-激发水泥和混凝土, 化学工业出版社, 2008, pp.158.
43 Zhao R D, Yuan Y, Cheng Z Q, et al. Construction and Building Materials, 2019, 222, 474.
[1] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[2] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[3] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[4] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[5] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[6] 袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
[7] 王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
[8] 李克亮, 弓晋伟, 陈爱玖, 孙作正, 杜晓蒙, 李宁宁. 裹浆改性再生骨料的形态特征评价方法[J]. 材料导报, 2023, 37(21): 22100017-7.
[9] 傅豪, 王朝辉, 刘鲁清, 刘伟, 余四新. 路用水性环氧改性乳化沥青组成优化及耐久性能评价[J]. 材料导报, 2023, 37(18): 22010074-9.
[10] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[11] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[12] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[13] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[14] 王家滨, 侯泽宇, 张凯峰, 李恒. 再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性[J]. 材料导报, 2022, 36(23): 21080171-11.
[15] 郑玉龙, 刘翔, 陆春华, 步森壮, 幸左贤二. 箍筋弯折时的初期损伤及其对力学性能的影响[J]. 材料导报, 2022, 36(23): 21110130-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed