Effects of Crystallization Schedule on Microstructure and Properties of Mg0.6Al1.2Si1.8O6 Transparent Glass-ceramics
BAO Zhenhong1, LUO Wei2, MIAO Lifeng1,*, JIANG Weihui1
1 National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic University, Jingdezhen 333001, Jiangxi, China 2 Jiaxing Glead Electronics Co.,Ltd., Jiaxing 314000, Zhejiang, China
Abstract: MgO-Al2O3-SiO2(MAS) system glass-ceramics have the properties of high mechanical, low dielectric loss, excellent chemical stability and thermal stability, showing great application value in electron, military, architecture and other fields. MAS transparent glass-ceramics were prepared by controlling the precipitation of Mg0.6Al1.2Si1.8O6 solid solution crystalline phase by melt quenching method. Effect of crystallization schedule on the microstructure and properties of glass-ceramics was investigated by XRD, SEM, hardness meter, bending strength tester and UV-Vis-NIR. The results show that when crystallization temperature increases from 950 ℃ to 1 020 ℃, the crystalline phase of glass-ceramics is Mg0.6Al1.2Si1.8O6 solid solution, and the glass-ceramics are transparent. When crystallization temperature rises to 1 050 ℃ and higher, the crystalline phase is cordierite and the glass-ceramics are opaque. Mg0.6Al1.2Si1.8O6 phase transforms to cordierite phase when crystallization temperature increase. Compared with the cordierite, the refractive index of Mg0.6Al1.2Si1.8O6 phase is closer to that of glass phase. The crystalline phase content of glass-ceramics increases from 42.9wt% to 97.5wt% with the increase of crystallization time from 2 h to 10 h. The average grain size of glass-ceramics increases from 17.50 μm to 30.58 μm with the increase of crystallization time from 4 h to 10 h. The light transmittance of glass-ceramics slowly decreases with prolonging crystallization time. The thermal expansion coefficient slowly increases with prolonging crystallization time. The Vickers hardness increases first and then flattens, and the bending strength increases first and then decreases with prolonging crystallization time. The suitable crystallization temperature is determined as 1 020 ℃, and the suitable crystallization time is determined as 8 h. When heat-treated at optimum crystallization schedule, the glass-ceramics have the best comprehensive properties, which have light transmittance of 83% in visible light region, thermal expansion coefficient of 3.857×10-6/℃(600 ℃), Vickers hardness of 10.2 GPa, and bending strength of 200 MPa.
1 Seidel S, Dittmer M, Holand W, et al. Journal of the European Ceramic Society, 2017, 37(7), 2685. 2 Li Z, Wu J F, Song L, et al. Journal of the European Ceramic Society, 2014, 34(15), 3981. 3 Liu F, Huang X, Qu J, et al. Journal of Non-Crystalline Solids, 2018, 481, 329. 4 Bao Z H, Jiang W H, Miao L F, et al. Materials Reports, 2018, 32(24), 4253 ( in Chinese) 包镇红, 江伟辉, 苗立锋, 等. 材料导报, 2018, 32(24), 4253. 5 Luo W, Bao Z H, Jiang W H, et al. Ceramics International, 2019, 45(18), 24750. 6 Han L, Song J, Zhang Q, et al. Journal of Non-Crystalline Solids, 2018, 481, 123. 7 Borrelli N F, Mitchell A L, Smith C M. Journal of the Optical Society of America B, 2018, 35(7), 1725. 8 Benitez T, Gomez S Y, Oliveira A P N. Ceramics International, 2017, 43(16), 13031. 9 Hao X J, Hu X L, Luo Z W, et al. Ceramics International, 2015, 41(10), 14130. 10 Hao X J, Luo Z W, Hu X L, et al. Journal of Non-Crystalline Solids, 2016, 432, 265. 11 Tang W F, Zhang Q, Luo Z W, et al. Applied Physics A-Materials Science & Processing, 2018, 124(2), 191. 12 Tang L Y, Wang J, Cheng J S, et al. Journal of the Chinese Ceramic Society, 2011, 39(1), 147. 13 Fan S G, Yu M Q, Zhang L, et al. Rare Metal Materials and Engineering, 2007(S2), 322 (in Chinese). 范仕刚, 余明清, 张林, 等. 稀有金属材料与工程, 2007(S2), 322. 14 Lu A X, Hu X L, Hao X J. Materials China, 2016, 35(12), 927 ( in Chinese). 卢安贤, 胡晓林, 郝小军. 中国材料进展, 2016, 35(12), 927. 15 Gawronski A, Patzig C, Hoche T, et al. Journal of Materials Science, 2015, 50(4), 1986. 16 Beall G H, Duke D A. Journal of Materials Science, 1969, 4(4), 340. 17 Berther T, Fokin V M, Zanotto E D. Journal of Non-Crystalline Solids, 2008, 354(15-16), 1721. 18 Li J, Mei Y Z, Luo Z W, et al. The Chinese Journal of Nonferrous Metals, 2011, 21(6), 1450 (in Chinese). 李婧, 梅宇钊, 罗志伟, 等. 中国有色金属学报, 2011, 21(6), 1450. 19 Li J H, Mei Y Z, Gao C, et al. Journal of Non-Crystalline Solids, 2011, 357(7), 1736. 20 Lu A X, Hu X L, Lei Y J, et al. Ceramics International, 2014, 40(1), 11. 21 Luo W, Bao Z H, Jiang W H, et al. Journal of the Chinese Ceramic Society, 2019, 47(5), 712 (in Chinese). 罗薇, 包镇红, 江伟辉, 等. 硅酸盐学报, 2019, 47(5), 712. 22 Du Y S, Zhang H X, Chen H, et al. Materials Reports, 2015, 29(16), 120(in Chinese). 杜永胜, 张红霞, 陈华, 等. 材料导报, 2015, 29(16), 120. 23 Hu W M, Cao C. Materials Reports, 2015, 29(S1), 333 (in Chinese). 胡文明, 曹超. 材料导报, 2015, 29(S1), 333. 24 Yasukawa K, Terashi Y, Nakayama A. Journal of the American Ceramic Society, 2010, 81(11), 2978. 25 Golshan N H, Yekta B E, Marghussian V K. Optical Materials, 2012, 34(4), 596. 26 Han L, Song J, Qian Z, et al. Silicon, 2018, 10(6), 2685. 27 Shan Y, Li J Z, Deng Z Q, et al. Journal of the Chinese Ceramic Society, 1981(4), 41 (in Chinese). 单瑛, 李家治, 邓泽群, 等. 硅酸盐学报, 1981(4), 403.