Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23020199-8    https://doi.org/10.11896/cldb.23020199
  无机非金属及其复合材料 |
物理钢化玻璃的研究进展
王衍行*, 杨鹏慧, 李现梓, 韩韬, 祖成奎
中国建筑材料科学研究总院有限公司,建材行业特种玻璃制备与加工重点实验室,北京 100024
Research Progress on Physical Tempered Glass
WANG Yanhang*, YANG Penghui, LI Xianzi, HAN Tao, ZU Chengkui
Building Material Industrial Key Laboratory for Special Glass Preparation and Processing, China Building Materials Academy, Beijing 100024, China
下载:  全 文 ( PDF ) ( 16014KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 物理钢化玻璃因具有高强度、高热稳定性、高安全性和低成本等优势而被广泛应用于建筑幕墙、高档家具、汽车风挡和液位计等领域。目前,物理钢化玻璃的研究主要集中在:(1)探究玻璃物理钢化机理,揭示物理钢化增强的结构起源,为实现玻璃更高力学性能和服役安全性提供理论指导;(2)优化物理钢化工艺参数,借助仿真模拟手段,进一步提高玻璃强度和安全性,实现玻璃物理钢化强度和破碎颗粒度的自主设计;(3)针对物理钢化玻璃安全应用的自爆顽症和钢化强度衰减现象,揭示钢化玻璃自爆机制和强度衰减规律,建立钢化玻璃自爆和强度衰减等关键性能评测方法。本文基于以上三个方面综述了物理钢化玻璃的国内外研究进展,并展望了其发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王衍行
杨鹏慧
李现梓
韩韬
祖成奎
关键词:  玻璃  物理钢化  表面压应力  颗粒度  自爆    
Abstract: Physical tempered glass is widely applied in curtain walls, high-end furniture, automobile windshields, and liquid level meters owing to its advantages of high strength, outstanding thermal stability, high safety, and low cost. At present, the research on the physical tempered glass mainly focuses on (i) exploring the mechanism of physical tempering and revealing the structural origin of physical strengthening to establish a theoretical basis for achieving improved mechanical properties and greater service safety of glass;(ii) optimizing the tempering process parameters to improve the glass strength and safety through simulations and to realize the independent design of physical tempering strength and broken particle size of glass;(iii) understanding the spontaneous cracking mechanism and establishing the strength attenuation law and evaluation met-hods, aimed at overcoming the spontaneous cracking and strength attenuation phenomena that restrict the safe application of physical tempered glass. Based on the above three aspects, the research progress of tempered glass at home and abroad are summarized.
Key words:  glass    physical tempering    surface compressive stress    particle size    spontaneous cracking
发布日期:  2024-06-25
ZTFLH:  TQ171  
通讯作者:  *王衍行,建材行业特种玻璃制备与加工重点实验室(中国建筑材料科学研究总院有限公司)教授级高工、博士研究生导师。1999年毕业于山东轻工业学院(现齐鲁工业大学),获得硅酸盐工程学士学位;2003年毕业于北京工业大学,获得材料学硕士学位;2009年毕业于北京科技大学,获得材料学博士学位。现从事特种玻璃制备与性能表征研究,近年作为项目负责人主持国家级科研项目10余项,发表学术论文78篇,其中SCI/EI收录39篇;授权发明专利40件;获得中国硅酸盐学会建筑材料技术发明一等奖1项。drwangyh@126.com   
引用本文:    
王衍行, 杨鹏慧, 李现梓, 韩韬, 祖成奎. 物理钢化玻璃的研究进展[J]. 材料导报, 2024, 38(11): 23020199-8.
WANG Yanhang, YANG Penghui, LI Xianzi, HAN Tao, ZU Chengkui. Research Progress on Physical Tempered Glass. Materials Reports, 2024, 38(11): 23020199-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020199  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23020199
1 Benitez T, Gomez S Y, Oliverira A P N, et al. Ceramics International, 2017, 43(16), 13031.
2 Kato Y, Yamazaki H, Yoshida S, et al. Journal of Non-Crystalline Solids, 2010, 356(35-36), 1768.
3 Dix S, Schuler C, Kolling S. Optics and Lasers in Engineering, 2022, 153, 106998.
4 Bodwal J, Chauhan M, Behera C, et al. Medicine, Science and the Law, 2021, 61(4), 305.
5 Cai R, Li P, Lin Y, et al. Vibroengineering Procedia, 2021, 36, 72.
6 Zhao Y, Liu R, Yan F, et al. Materials, 2021, 14(3), 607.
7 Wondraczek L, Bouchbinder E, Ehrlicher A, et al. Advanced Materials, 2022, 34(14), 2109029.
8 Kim H S, Park S H. Journal of the European Ceramic Society, 2022, 42(4), 1743.
9 Gardon R. Glass Science and Technology, 1980, 5, 145.
10 Sheth N, Howzen A, Campbell A, et al. International Journal of Applied Glass Science, 2019, 10(4), 431.
11 Yang H, Liu F, Duan R, et al. International Journal of Thermal Sciences, 2022, 175, 107475.
12 Nielsen J H, Bjarrum M. Glass Structures & Engineering, 2017, 2, 133.
13 Iglesias A, Martinze-Agirre M, Torca I, et al. Computers & Structures, 2022, 264, 106757.
14 Nielsen J H, Thiele K, Schneider J, et al. Construction and Building Materials, 2021, 310, 125238.
15 Lohr K, Weller B. Glass Structures & Engineering, 2019, 4 (1), 99.
16 Pourmoghaddam N, Kraus M, Schneider J, et al. Glass Structures & Engineering, 2019, 4(2), 257.
17 Nielsen J H, Olesen J F, Stang H. Journal of Civil Engineering and Management, 2010, 22(2), 179.
18 Nielsen J, Olesen J, Poulsen P N, et al. Materials and Structures, 2010, 43(7), 947.
19 Gulati S, Roe T, Vitkala J. In: Conference Proceedings, Glass Proces-sing Days. Finland: Tampere, 2001, pp. 72.
20 Cirillo F, Isopi G M. Applied Thermal Engineering, 2009, 29(5-6), 1173.
21 Karlsson K S R, Wondraczek L. Encyclopedia of Glass Science, Technology, History, and Culture, 2021, 1, 391.
22 Drexhage M G, Gupta P K. Journal of the American Ceramic Society, 1980, 63(1-2), 72.
23 Fan B W, Zhu K Q, Shi Q, et al. Journal of Non-Crystalline Solids, 2016, 437, 72.
24 Xu W G. Glass & Enamel, 2011, 39(4), 25(in Chinese).
徐伟光. 玻璃与搪瓷, 2011, 39(4), 25.
25 He H, Liu H, Lin Y T, et al. Journal of the American Ceramic Society, 2021, 104(9), 4718.
26 Song L X, Hu X F, Chen X Q. Glass & Enamel, 1996, 24(3), 40(in Chinese).
宋力昕, 胡行方, 陈显求. 玻璃与搪瓷, 1996, 24(3), 40.
27 Veer F A, Louter P C, Bos F P. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(1), 18.
28 Chang J Y, Chou J C. Journal of Non-Crystalline Solids, 1982, 52(1-3), 395.
29 Koike A, Akiba S, Sakagami T, et al. Journal of Non-Crystalline Solids, 2012, 358(24), 3438.
30 Narayanaswamy O S. Journal of the American Ceramic Society, 1978, 61(3-4), 146.
31 Varshenya A K. International Journal of Applied Glass Science, 2010, 1(2), 131.
32 Hand R J, Tadjiev D R. Journal of Non-Crystalline Solids, 2010, 356(44-49), 2417.
33 Gardon R. Journal of Non-Crystalline Solids, 1985, 73(1-3), 233.
34 Lee H, Cho S, Yoon K, et al. New Journal of Glass and Ceramics, 2012, 2, 138.
35 Vocialta M, Corrado M, Molinari J F. Engineering Fracture Mechanics, 2018, 188, 448.
36 Kozlowski M, Zemla K, Kosmal M, et al. Materials, 2021, 14(24), 7658.
37 Tandon R, Cook R E. Journal of the American Ceramic Society, 1993, 76(4), 885.
38 Wan D T, Bao Y W, Zu C K, et al. Journal of the Chinese Ceramic Society, 2009, 37(6), 1049(in Chinese).
万德田, 包亦望, 祖成奎, 等. 硅酸盐学报, 2009, 37(6), 1049.
39 Bao Y, Yang J, Qiu Y, et al. Materials Science and Engineering: A, 2009, 512(1-2), 45.
40 Jacob L. Glass Performance Days, 2001, 108.
41 Tolke T, Barz A, Stachel D. Journal of Physics and Chemistry of Solids, 2007, 68(5-6), 830.
42 Yousfi O, Donnadieu P, Brechet Y, et al. Acta Materialia, 2010, 58(9), 3367.
43 Balayeva O O, Azizov A A, Muradov M B, et al. Materials Science in Semiconductor Processing, 2017, 64, 130.
44 Liu X G, Bao Y W, Wan D T, et al. Journal of Inorganic Materials, 2020, 35(2), 211(in Chinese).
刘小根, 包亦望, 万德田, 等. 无机材料学报, 2020, 35(2), 211.
45 Pisano G, Bonati A, Royer C G. Journal of the American Ceramic Society, 2021, 104(1), 383.
46 Kasper A, Rubbert F. Glass Structures & Engineering, 2020, 5(2), 211.
47 Bonati A, Pisano G, Royer C G. Journal of the American Ceramic Society, 2019, 102(5), 2506.
48 Biswas R K, Ghosh J, Nannarone S, et al. Materialia, 2020, 12, 100776.
49 Li X Z, Wang Y H, Yang P H, et al. Journal of Non-Crystalline Solids, 2022, 596, 121847.
50 Stavrou E, Zaug J M, Bastea S, et al. Journal of Applied Physics, 2017, 121(17), 175901.
51 Shen Z, Zhao Y, Tian Z, et al. Journal of Non-Crystalline Solids, 2018, 499, 17.
52 Li D, Li X C, Meng M, et al. Ceramics International, 2018, 44(10), 11650.
53 Anusavice K J, Shen C, Vermost B, et al. Dental Materials, 1992, 8(3), 149.
54 Feng H. Design and numerical simulation of port cover for air intake port. Master's Thesis, Chongqing University, China, 2018 (in Chinese).
冯浩. 进气道堵盖设计与仿真研究. 硕士学位论文, 重庆大学, 2018.
55 Wang C H, Liu Y, Liu Y B. Acta Astronautica, 2011, 68(11-12), 1881.
56 Bechet F, Siedow N, Lochegnies D. Finite Elements in Analysis and Design, 2015, 94, 16.
57 Eslami M, Mosalam K M, Marjanishvili S, et al. International Journal of Impact Engineering, 2020, 136, 103433.
[1] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用空心微球制备超轻泡沫玻璃及其性能研究[J]. 材料导报, 2024, 38(4): 22090062-5.
[2] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[3] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[4] 童钦, 霍冀川, 张行泉, 霍泳霖, 徐冲, 蒋勤, 宋巍伟. 模拟镧系元素固化的掺La2O3玄武岩玻璃的结构与性能研究[J]. 材料导报, 2023, 37(24): 21110089-5.
[5] 孙慧慧, 周子吉, 曹文, 王群, 周忠华, 黄悦. 玻璃表面梯度多孔减反射膜层的水热制备及水刻蚀剂添加Na2HPO4对膜层结构的影响[J]. 材料导报, 2023, 37(22): 22060210-7.
[6] 沙晓松, 陈季香, 徐相田, 赵佳乐, 王硕, 仲海洋, 程轶. 基于空间利用率定义合金相中的第一近邻团簇[J]. 材料导报, 2023, 37(22): 22030205-5.
[7] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[8] 万伟, 朱永昌, 张行泉, 崔竹, 杨德博, 焦云杰, 霍冀川, 孟保健. MoO3含量对钙钛锆石基硼硅酸盐玻璃陶瓷的影响[J]. 材料导报, 2023, 37(13): 21080150-6.
[9] 尹升华, 曹永, 吴爱祥, 侯永强, 白龙剑. 玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究[J]. 材料导报, 2023, 37(13): 21110083-7.
[10] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究[J]. 材料导报, 2023, 37(1): 21050246-5.
[11] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[12] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[13] 连启会, 张行泉, 霍冀川, 吴浪, 张壮森. Nd2O3对钼酸钙-钙钛锆石硼硅酸盐玻璃陶瓷结构和性能的影响[J]. 材料导报, 2022, 36(7): 21020054-5.
[14] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[15] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed