Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23020250-6    https://doi.org/10.11896/cldb.23020250
  金属与金属基复合材料 |
AMT及其复配剂对青铜合金的缓蚀机理研究
毕江元1,2, 宋述鹏1,2,*, 丁兴1,2, 柯德庆1, 周和荣1
1 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
2 武汉科技大学材料与冶金学院,武汉 430081
Study on Corrosion Inhibition Effect and Mechanism of AMT and Its Compound on Bronze Alloy
BI Jiangyuan1,2, SONG Shupeng1,2,*, DING Xing1,2, KE Deqing1, ZHOU Herong1
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 15652KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 青铜文物是国之瑰宝,其组织成分主要是青铜合金,本工作以青铜合金为研究对象,对合金表面的缓蚀效率及机理进行实验探索,为青铜文物保护材料的性能研究提供实验支持。采用失重法和电化学极化测试研究了2-氨基-5-巯基-1,3,4-噻二唑(AMT)复配尿素和三聚氰胺作为青铜合金缓蚀剂的缓蚀效率。失重实验结果表明,随着AMT浓度的增大,试样在三组实验腐蚀溶液中缓蚀效率均上升,其中1%AMT复配尿素组在NaCl溶液中的缓蚀效率为最大。电化学分析结果表明,随着加入电解液中AMT浓度的增加,1%AMT复配尿素组的腐蚀电位比1%AMT组上升了0.08 V,缓蚀效率为89.8%。采用SEM和XPS对试样表面含Cu的AMT缓蚀膜进行了分析,并对缓蚀机理进行探讨,结果表明,铜离子与AMT反应生成Cu(I)-AMT络合物,吸附在青铜表面起到缓蚀作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕江元
宋述鹏
丁兴
柯德庆
周和荣
关键词:  青铜合金  缓蚀效率  尿素  三聚氰胺  缓蚀机理    
Abstract: Bronze cultural relics were the national treasure, and its structural composition was mainly bronze alloy. This article taken bronze alloys as the research object to explore the corrosion inhibition efficiency and mechanism of alloy surfaces, provided experimental support for the research on the performance of bronze heritage protection materials. The slow-release efficiency of 2-amino-5-mercapto-1, 3, 4-thiadiazole (AMT) combined urea and melamine as corrosion inhibitor for bronze alloy was studied by weight-loss method and electrochemical polarization test. The results showed that with the increase of AMT concentration, the slow-release efficiency of the sample in the three groups of experimental corrosion solution increased, and the slow-release efficiency of the 1%AMT compound urea group was the highest ones in NaCl solution. The results of electrochemical analysis showed that with the increase of AMT concentration in the electrolyte, the corrosion potential of 1%AMT combined urea group was 0.08 V higher than that of 1%AMT group, and the corrosion inhibition efficiency was 89.8%. SEM and XPS were used to analyze the AMT corrosion inhibitor film containing Cu on the surface of the sample, and the slow release mechanism was discussed. The results show that copper ions react with AMT to form Cu (I) - AMT complexes, which act as corrosion inhibitors on the surface of bronze.
Key words:  bronze alloy    slow release efficiency    urea    melamine    slow release mechanism
发布日期:  2024-06-25
ZTFLH:  TG178  
基金资助: 国家重点研发计划(2020YFC1522000)
通讯作者:  *宋述鹏,武汉科技大学副教授。以第一作者在国内外学术期刊上发表论文40余篇,申请国家发明专利12项,其中授权5项。研究工作主要有金属材料的制备与表征,开展关于先进金属功能材料的基础理论和应用研究,主持和参与包括科技部国家重点研发计划、国家自然科学基金面上和青年项目多项。spsong@wust.edu.cn   
作者简介:  毕江元,现为武汉科技大学材料与冶金学院硕士研究生。主要从事金属材料特别是青铜合金的保护研究。
引用本文:    
毕江元, 宋述鹏, 丁兴, 柯德庆, 周和荣. AMT及其复配剂对青铜合金的缓蚀机理研究[J]. 材料导报, 2024, 38(11): 23020250-6.
BI Jiangyuan, SONG Shupeng, DING Xing, KE Deqing, ZHOU Herong. Study on Corrosion Inhibition Effect and Mechanism of AMT and Its Compound on Bronze Alloy. Materials Reports, 2024, 38(11): 23020250-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020250  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23020250
1 Sudheer, Quraishi M A. Corrosion Science, 2013, 70, 161.
2 EI Issami S, Bazzi L, Mihit M, et al. Pigment and Resins Technology, 2007, 36(3), 161.
3 Matjaz Finŝgar, Darja Kek Merl. Corrosion Science, 2014, 80, 82.
4 Zhu H F, Zhou H. Journal of Electrochemistry, 1999, 5(3), 314 (in Chinese).
祝鸿范, 周浩. 电化学, 1999, 5(3), 314.
5 Zhu Y F, Shi B B, Li D G, et al. Journal of Nanjing University of Technology(Natural Science Edition), 1999, 21(2), 16 (in Chinese).
朱一帆, 施兵兵, 李大刚, 等. 南京化工大学学报 , 1999, 21(2), 16.
6 Li Y, Cao C N, Lin H C. Acta Physico-Chimica Sinica, 1998, 14(4), 365 (in Chinese).
李瑛, 曹楚南, 林海潮. 物理化学学报, 1998, 14(4), 365.
7 Qian J H, Su H Y, Peng D, et al. Chemical Research and Application, 2017, 29(4), 518 (in Chinese).
钱建华, 苏红玉, 彭丹, 等. 化学研究与应用, 2017, 29(4), 518.
8 Matjaz Finŝgar, Darja Kek Merl. Corrosion Science, 2014, 83, 164.
9 Constantinides I, Adriaens A, Adams F. Applied Surface Science, 2002, 189(2), 90.
10 Chen S Y, Zhang R, Liu M. Sciences of Conservation and Archaeology, 2013, 25(4), 46 (in Chinese).
陈淑英, 张然, 柳敏. 文物保护与考古科学, 2013, 25(4), 46.
11 Huang K Y. Sichuan Chemical Industry, 1995(3), 32 (in Chinese).
黄魁元. 四川化工, 1995(3), 32.
12 Wang Y Y. N-heterocyclic organic inhibitors on the corrosion properties and mechanism of bronze impact. Master's Thesis, Chengdu University of Technology, China, 2009 (in Chinese).
王媛媛. 含氮杂环有机青铜缓蚀剂的缓蚀性能及其机理研究, 硕士学位论文, 成都理工大学, 2009.
13 Al-Zubiady S F, Al-Khafaji Z H K, Mohamed I M. Research Journal of Pharmacy and Technology, 2018, 11(1), 284.
14 Jiang L Y, Pang L W, Li X D, et al. Journal of Atomic and Molecular Physics, 2015, 32(1), 26 (in Chinese).
姜丽艳, 庞丽纹, 李晓东, 等. 原子与分子物理学报, 2015, 32(1), 26.
15 Li X D, An M M. Materials Reports, 2017, 31(11), 163 (in Chinese).
李晓东, 安梅梅. 材料导报, 2017, 31(11), 163.
16 Shen Jianjia, Yang Dong, Ma Linrui, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 636(4), 128058.
17 Wei W J, Fu H T, Li Y, et al. Acta Physico-Chimica Sinica, 2002, 18(2), 152 (in Chinese).
魏无际, 傅海涛, 李瑛, 等. 物理化学学报, 2002, 18(2), 152.
18 Finŝgar M. Corrosion Science, 2013, 79, 90.
19 Finŝgar M. Corrosion Science, 2013, 77, 350.
20 Pergolese B, Muniz-Miranda M, Bigotto A. Journal of Physical Chemistry B, 2006, 110(18), 9241.
21 Fonder G, Laffineur F, Delhalle J, et al. Colloid Interface Science, 2008, 326, 333.
22 Sun X Q. Journal of Chinese Antiquity, 2002, 53(6), 56 (in Chinese).
孙晓强.文物世界,2002,53(6),56.
[1] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[2] 刘金明, 张一甫, 甘卫星, 莫海林. 糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展[J]. 材料导报, 2023, 37(17): 21120170-7.
[3] 王留留, 任洁, 卢星宇, 邹力, 谢佳乐. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023, 37(12): 21070195-15.
[4] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[5] 王渊源, 阎鑫, 艾涛, 周鑫, 余康, 牛艳辉. 碳化三聚氰胺泡沫负载ZIF-67活化过硫酸氢钾降解罗丹明B[J]. 材料导报, 2022, 36(17): 21040213-7.
[6] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[7] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[8] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[9] 唐启恒, 郭文静. 三聚氰胺聚磷酸盐/次磷酸铝对高密度纤维板阻燃和力学性能的影响[J]. 材料导报, 2021, 35(16): 16166-16171.
[10] 吴坚, 李建营, 李绍敏, 刘昊. 均匀沉淀法助力Li2ZrO3包覆LiNi0.85Co0.1Mn0.05O2提升电化学性能[J]. 材料导报, 2020, 34(6): 6015-6019.
[11] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[12] 王正洲, 孙皓宇, 徐小燕. 三聚氰胺苯基磷酸盐的合成及在硬质聚氨酯泡沫中的应用[J]. 《材料导报》期刊社, 2017, 31(14): 4-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed