Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20080297-8    https://doi.org/10.11896/cldb.20080297
  金属与金属基复合材料 |
电催化尿素氧化的镍基催化剂表界面调控
向阳, 熊昆*, 张海东, 陈佳, 余林键
重庆工商大学环境与资源学院,废油资源化技术与装备教育部工程研究中心,重庆 400067
Surface Interface Regulation of Nickel-based Catalysts for Electrocatalytic Urea Oxidation
XIANG Yang, XIONG Kun*, ZHANG Haidong, CHEN Jia, YU Linjian
Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
下载:  全 文 ( PDF ) ( 7133KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将可再生能源发电用于电解水制氢被认为是构筑“氢循环”、缓解能源危机和解决环境问题的理想技术路径之一,然而传统电解水阳极析氧反应(OER)过电位大、反应动力学迟缓,严重制约了电解水制氢的整体效率。而使用更易进行的阳极尿素氧化反应(UOR)取代OER,不仅可以显著降低制氢能耗,还能附带处理富含尿素的废水,在获取清洁氢能源的同时获得环保附加价值,是近年来受到高度关注的一种新型绿色制氢技术。但UOR步骤复杂,6e-转移过程缓慢,故需要高活性催化剂促进其反应速率。
   在电催化尿素氧化反应中,通过控制镍基催化剂的尺寸、形貌,使其暴露有利于催化尿素氧化分解的活性位点;引入缺陷空位和配位不饱和活性位可改变催化剂表面的电子构型,丰富催化活性位点;掺杂其他元素调控催化剂的电子结构,不仅能改变催化剂的导电性,提升其电子传导能力,还可以诱导晶相或晶面发生变化,提高催化剂的本征活性;构建具有异质结的复合催化剂,利用异质界面与活性相的协同作用,改变反应物的吸/脱附能力,促进其电子转移和传导,从而增强镍基催化剂催化UOR的性能。
   基于此,本文总结了近几年镍基UOR催化剂的设计理念和最新研究现状,重点阐述了构筑不同形貌尺寸、缺陷工程、掺杂改性、异质结活性界面的镍基催化剂促进UOR的作用机制,对镍基催化剂的合成方法和结构、电化学性能及反应机制进行了概括。此外,针对现有研究对缺陷-结构-性能关系认识的不足,提出了理性设计缺陷镍基催化剂的发展方向,为高效尿素氧化催化剂的开发提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
向阳
熊昆
张海东
陈佳
余林键
关键词:  镍基催化剂  电催化  尿素氧化  缺陷工程  掺杂  异质结    
Abstract: Electrochemically splitting water into hydrogen by renewable energy production is considered as one of the most promising candidates for building “hydrogen cycle”, alleviating energy crisis and sloving environmental problems. However, it is greatly restrained the overall efficiency of hydrogen production by the high overpotential of oxygen evolution reaction (OER) and slow reaction kinetics in the traditional water electrolysis. In comparison with OER, urea oxidation reaction (UOR) is an easy process which not only consumes much less energy from hydrogen production, but also degrades urea-rich wastewater. Thus, it is an environmentally friendly technology for hydrogen production from urea electrolysis, which has attracted much attention in recent years. Significant efforts have been made to explore high-effective catalysts due to the UOR with complex process and slow 6e- transfer rate.
To improve the UOR performance of Ni-based electrocatalysts, some researchers have devoted to increasing the active sites for electrocatalytic oxidation of urea by controlling the size and morphology of Ni-based catalysts. The surface electron structure can also be changed by incorporation of defect vacancy and unsaturated active site, which is beneficial for UOR. In addition, doping heteroatom is conducive to regulate the electron structure of the catalyst, which can not only change its electrical conductivity, but also induce the conversion of crystal phase or crystal face to improve the intrinsic activity of the catalyst. In recent years, some studies have been dedicated to developing composite catalysts with heterogeneous junction, forming synergistic effect of heterogeneous interface and active phase, which can change the adsorption/desorption of the reactants and promote the electron transfer and electrical conductivity, resulting in enhancing the electrocatalytic UOR performance of Ni-based catalysts.
Herein, the design concept and research status of nickel-based UOR catalysts were summarized in recent years, especially in the mechanism of promoting UOR on the Ni-based catalysts through regulating morphology and microstructure, defect engineering, doping modification, and heterojunction. The influence on the electrochemical properties and reaction mechanism of UOR and the synthesis method and structure of Ni-based catalysts were also reviewed. Furthermore, in view of the lack of understanding of the relationships of defect-structure-performance, the research direction of rational design of defective nickel-based catalysts was proposed to shed light on further development of urea electrolysis.
Key words:  Ni-based catalyst    electrocatalysis    urea oxidation    defect engineering    doping    heterojunction
发布日期:  2022-05-24
ZTFLH:  TB331  
  O646  
基金资助: 国家自然科学基金(22078032);重庆市自然科学基金(cstc2020jcyj-msxmX0345);重庆市教委项目(KJZD-M202100802);重庆市教委高校创新群体(CXQT21023);重庆市教委研究生导师团队(yds183007)
通讯作者:  kunxiong@ctbu.edu.cn   
作者简介:  向阳,2019年6月本科毕业于桂林理工大学。现为重庆工商大学化学工程专业硕士研究生,研究方向为电催化氧化反应与纳米功能材料。
熊昆,副研究员/博士(后),硕士研究生导师。2015年毕业于重庆大学化学工程与技术专业,获工学博士学位,同年进入重庆工商大学工作,主要从事新型催化材料设计、环境催化及能源转化等方面的研究。在Journal of Materials Chemistry A, Chemical Communications, Electrochemistry Communications, Journal of Power Sources, Applied Catalysis A-General等国际重要学术刊物上发表学术论文40余篇,授权国家发明专利3项。
引用本文:    
向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
XIANG Yang, XIONG Kun, ZHANG Haidong, CHEN Jia, YU Linjian. Surface Interface Regulation of Nickel-based Catalysts for Electrocatalytic Urea Oxidation. Materials Reports, 2022, 36(10): 20080297-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080297  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20080297
1 Baraat N A M, Amwn M T, Al-mubaddel F S, et al. Journal of Advanced Research, 2019, 16, 43.
2 Kakati N, Maiti J, Lee K S, et al. Electrochimica Acta, 2017, 240, 175.
3 Yan W, Wang D, Botte G G. Electrochimica Acta, 2012, 61, 25.
4 Sun X, Ding R. Catalysis Science & Technology, 2020, 10, 1567.
5 Urbańczyk E, Sowa M, Simka W. Journal of Applied Electrochemistry, 2016, 46(10), 1011.
6 Bian L L, Du Q Y, Tian X L, et al. Chemical Industry and Engineering Progress, 2017, 36(3), 926 (in Chinese).
边路路, 杜庆阳, 田晓录, 等. 化工进展, 2017, 36(3), 926.
7 Yousef A, El-newehy M H, Al-deyab S S, et al. Arabian Journal of Chemistry, 2017, 10(6), 811.
8 Liang Y, Liu Q, Asiri A M, et al. Electrochimica Acta, 2015, 153, 456.
9 Yan W, Wang D, Botte G G. Applied Catalysis B: Environmental, 2012, 127, 221.
10 Li F, Chen J, Zhang D, et al. Chemical Communications, 2018, 54(41), 5181.
11 King R L, Botte G G. Journal of Power Sources, 2011, 196(22), 9579.
12 Chen Q, Nie Y, Ming M, et al. Chinese Journal of Catalysis, 2020, 41(12), 1791.
13 Cooper M, Botte G. Journal of the Electrochemical Society, 2006, 153(10), A1894.
14 Sayed E T, Eise T, Mohamed H O, et al. Journal of Power Sources, 2019, 417, 159.
15 Zhu B, Liang Z, Zou R. Small, 2020, 16(7), 1906133.
16 Sha L, Ye K, Wang G, et al. Chemical Engineering Journal, 2019, 359, 1652.
17 Vedharathinam V, Botte G G. Electrochimica Acta, 2012, 81, 292.
18 Yang D, Gu Y, Yu X, et al. ChemElectroChem, 2018, 5(4), 659.
19 Yu Z, Zhu W, Li Y, et al. Inorganic Chemistry, 2018, 57(8), 4693.
20 Xiao C, Li S, Zhang X, et al. Journal of Materials Chemistry A, 2017, 5(17), 7825.
21 Ding Y, Li Y, Xue Y, et al. Nanoscale, 2019, 11(3), 1058.
22 Jiao S, Fu X, Zhang L, et al. Nano Today, 2020, 31, 100833.
23 Wang Q, Lei Y, Wang Y, et al. Energy & Environmental Science, 2020, 13(6), 1593.
24 Li B, Song C, Rong J, et al. Journal of Energy Chemistry, 2020, 50, 195.
25 Ye K, Wang G, Cao D, et al. Topics in Current Chemistry, 2018, 376, 42.
26 Liu M, Jiao Y, Zhan S, et al. Catalysis Today, 2020, 355, 596.
27 Zhan S, Zhou Z, Liu M, et al. Catalysis Today, 2019, 327, 398.
28 Yang W, Yang X, Hou C, et al. Applied Catalysis B: Environmental, 2019, 259, 118020.
29 Bian L, Du T, Du Q, et al. Journal of Applied Electrochemistry, 2017, 47, 905.
30 Xiong P, Ao X, Chen J, et al. Electrochimica Acta, 2019, 297, 833.
31 Hosseini H, Shahrokhian S. Chemical Engineering Journal, 2019, 375, 122090.
32 Xiong K, Gao Y, Chen J, et al. Chemical Communications, 2020, 56(4), 611.
33 Gajaria T K, Roondhe B, Dabhi S D, et al. International Journal of Hydrogen Energy, 2020, 45(44), 23928.
34 Zhang D, Zhang J, Wang H, et al. Journal of Alloys and Compounds, 2019, 806, 1419.
35 Zhou X, Gao H, Wang Y, et al. Journal of Materials Chemistry A, 2018, 6(30), 14939.
36 Pei J, Gai X, Yang J, et al. Nature Communications, 2016, 7, 10450.
37 Wang H, Yong D, Chen S, et al. Journal of the American Chemical Society, 2018, 140(5), 1760.
38 Xiao Z, Xie C, Wang Y, et al. Journal of Energy Chemistry, 2020, 53, 208.
39 Liu Y, Liu P, Qin W, et al. Electrochimica Acta, 2019, 297, 623.
40 Zhang L, Wang L, Lin H, et al.Angewandte Chemie International Edition, 2019, 58(47), 16820.
41 He Q, Wan Y, Jiang H, et al. ACS Energy Letters, 2018, 3(6), 1373.
42 Tong Y, Chen P, Zhang M, et al. ACS Catalysis, 2017, 8(1), 1.
43 Liu Z, Teng F, Yuan C, et al. Applied Catalysis A: General, 2020, 602, 117670.
44 Yan X, Zhang W D, Hu Q T, et al. International Journal of Hydrogen Energy, 2019, 44(51), 27664.
45 Zeng M, Wu J, Li Z, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(5), 4777.
46 Senthilkumar N, Gnana K G, Manthiram A. Advanced Energy Materials, 2018, 8(6), 1.
47 Guo F, Ye K, Cheng K, et al. Journal of Power Sources, 2015, 278, 562.
48 You X C.Journal of Chongqing University of Technology (Nature Science), 2020, 34(6), 123 (in Chinese).
游晓畅. 重庆理工大学学报(自然科学), 2020, 34(6), 123.
49 Guo Y J, Li F, Guo D, et al. Material Reports B: Review Papers, 2020, 34(8), 16011 (in Chinese).
郭亚杰, 李帆, 郭栋, 等.材料导报:研究篇, 2020, 34(8), 16011.
50 Xiong K, Yu L J, Xiang Y, et al. Journal of Alloys and Compounds, 2022, 912, 165234.
51 Wang Z, Liu W, Hu Y, et al. Applied Catalysis B: Environmental, 2020, 272, 118959.
52 Wang G Q, Liu J Q, Dong W N, et al. Acta Physica Sinica, 2018, 67(23), 276 (in Chinese).
王桂强, 刘洁琼, 董伟楠, 等. 物理学报, 2018, 67(23), 276.
53 Muthuchamy N, Jang S, Park J C, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(18), 15526.
54 Qian S, Rao Z, Liu Y, et al. Electrochimica Acta, 2020, 330, 135211.
55 Xu Y, Chai X, Ren T, et al. Chemical Communications, 2020, 56(14), 2151.
56 Vilana J, Góémez E, Vallés E. Applied Surface Science, 2016, 360, 816.
57 Shi W, Ding R, Li X, et al. Electrochimica Acta, 2017, 242, 247.
58 Sun C B, Guo M W, Siwal S S, et al. Journal of Catalysis, 2020, 381, 454.
59 Song X, Gao L, Li Y, et al. Electrochimica Acta, 2017, 251, 284.
60 Wang L, Ren L, Wang X, et al. ACS Applied Materials & Interfaces, 2018, 10(5), 4750.
61 Zhu X, Dou X, Dai J, et al. Angewandte Chemie International Edition, 2016, 55, 12465.
62 Barakat N A M, Yassin M A, Yasin A S, et al. International Journal of Hydrogen Energy, 2017, 42(34), 21741.
63 Wu N, Guo R, Zhang X, et al. Journal of alloys and Compouns, 2019, 806, 1419.
64 Liu D, Li W, Li L, et al. Journal of Colloid & Interface Science, 2018, 529, 337.
65 Liu H, Liu Z, Feng L. Nanoscale, 2019, 11(34), 16017.
66 Li C, Liu Y, Zhuo Z, et al. Advanced Energy Materials, 2018, 8(27), 1.
67 Shi J P, Zhou X B, Zhang Z P, et al. Chinese Science Bulletin, 2017, 62(20), 2180 (in Chinese).
史建平, 周协波, 张哲朋, 等. 科学通报, 2017, 62(20), 2180.
68 Khalafallah D, Ouyang C, Zhi M, et al. ChemElectroChem, 2019, 6(20), 5191.
69 Sha L, Liu T, Zhu K, et al. Journal of Materials Chemistry A, 2020, 8(35), 18055.
70 Ma G, Xue Q, Zhu J, et al. Applied Catalysis B: Environmental, 2020, 265, 118567.
[1] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[2] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[3] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[4] 王南南, 李继文, 刘伟, 李武会, 张玉栋, 雷金坤, 徐流杰. 铝钼共掺杂氧化锌粉末的制备及光电性能研究[J]. 材料导报, 2022, 36(4): 20090212-7.
[5] 陈刚, 熊施权, 吕洪, 郝传璞. 电解阳极催化剂用介孔Sb、Co掺杂SnO2载体的研究[J]. 材料导报, 2022, 36(3): 20110206-6.
[6] 甘建昌, 胡海平, 苏明, 陈锋, 王辉虎. 金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用[J]. 材料导报, 2022, 36(10): 20100188-10.
[7] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[8] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[9] 丁苏莹, 吴子华, 谢华清, 王元元, 栾福园, 余思琦. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(z2): 1-7.
[10] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[11] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[12] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[13] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[14] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[15] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed