Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20100188-10    https://doi.org/10.11896/cldb.20100188
  无机非金属及其复合材料 |
金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用
甘建昌1,2, 胡海平1,2, 苏明1,2, 陈锋1,2, 王辉虎1,2,*
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068
2 湖北工业大学材料与化学工程学院,武汉 430068
Construction, Photocatalytic Performance Improvement and Application of Metal Sulfide/g-C3N4 Heterojunctions
GAN Jianchang1,2, HU Haiping1,2, SU Ming1,2, CHEN Feng1,2, WANG Huihu1,2,*
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
2 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
下载:  全 文 ( PDF ) ( 5087KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属硫化物和石墨相g-C3N4是两类具有可见光活性的典型光催化半导体材料,两者复合形成的异质结因具有高效可见光活性受到了研究者的广泛关注,在环境污染治理与新能源开发方面具有重要意义。然而,金属硫化物与g-C3N4复合后所形成的异质结仍存在电子-空穴复合率高、催化活性差和能量转换效率低等问题。本文从金属硫化物/g-C3N4异质结的构建、光催化剂性能改善及应用三个方面对近年来的研究进行了综述。在金属硫化物/g-C3N4异质结的构建方面,分别从Ⅱ型异质结、Z型异质结(直接Z型和间接Z型)、P-N型异质结和S型异质结进行总结;从异质结形貌调控、表/界面改性等方面对异质结光催化性能改善进行了归纳,同时概述了金属硫化物/g-C3N4异质结在水解产氢、CO2还原、降解有机污染物、光催化固氮以及光催化杀菌等方面的应用,并提出了金属硫化物/g-C3N4异质结在光催化过程中所面临的诸多挑战,指出利用能带匹配来合理构建异质结是提高金属硫化物与g-C3N4光催化剂活性的有效方法,金属硫化物/g-C3N4异质结大规模的廉价制备是实际应用中需要解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘建昌
胡海平
苏明
陈锋
王辉虎
关键词:  金属硫化物  g-C3N4  异质结  有机污染物降解  水解产氢    
Abstract: Metal sulfides and graphite phase g-C3N4 are two kinds of typical photocatalytic semiconductor materials with visible light activity. The heterojunctions formed by the combination of metal sulfides and g-C3N4 have been widely concerned by researchers due to its excellent photocatalytic performance, which has important application prospect in environmental pollution control and new energy development. However, the hete-rojunctions still suffer from high electron-hole recombination rate, poor catalytic activity and low energy conversion efficiency. In this paper, the recent research progress in the construction of metal sulfide/g-C3N4 heterojunctions, improvement of photocatalytic performance and application are reviewed. In the aspect of metal sulfide/g-C3N4 heterojunctions construction, the type Ⅱ heterojunction, Z-scheme heterojunction (direct Z-shceme and indirect Z-scheme), P-N heterojunction and S-scheme heterojunction are summarized respectively, and the improvement of hete-rojunctions photocatalytic performance is concluded from the aspects of heterojunctions morphology control and surface/interface modification. At the same time, the applications of metal sulfide/g-C3N4 heterojunctions in hydrogen production, CO2 reduction, organic pollutants degradation, photocatalytic nitrogen fixation and photocatalytic sterilization are also summarized. The challenges faced by metal sulfide/g-C3N4 heterojunctions in the process of photocatalysis are put forward. It is pointed out that the reasonable construction of heterojunctions by using energy band matching is the key to improving the photocatalytic activity of metal sulfides and g-C3N4. Large-scale and cheap fabrication of metal sulfide/g-C3N4 heterojunctions is a problem to be solved in practical application.
Key words:  metal sulfides    g-C3N4    heterojunction    degradation of organic pollutants    hydrogen production
发布日期:  2022-05-24
ZTFLH:  Q643  
基金资助: 湖北省教育厅重点项目(D20171405)
通讯作者:  wanghuihu@hbut.edu.cn   
作者简介:  甘建昌,2018年6月毕业于湖北工业大学,获得工学学士学位。现为湖北工业大学硕士研究生,在王辉虎教授的指导下进行研究。目前主要研究领域为半导体光催化。
王辉虎,湖北工业大学材料与化学工程学院教授、硕士研究生导师, 2006年12月在华中科技大学材料科学与工程学院取得博士学位,2007—2010年分别在韩国延世大学和葡萄牙波尔图大学进行博士后研究工作。研究方向为新能源材料制备与应用。近年来,在半导体光催化以及储氢材料领域发表论文50余篇,包括Chemical Engineering Journal、Journal of Hazardous Materials、Energy、ChemcatChem、Catalysis Science & Technology、International Journal of Hydrogen Energy等。
引用本文:    
甘建昌, 胡海平, 苏明, 陈锋, 王辉虎. 金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用[J]. 材料导报, 2022, 36(10): 20100188-10.
GAN Jianchang, HU Haiping, SU Ming, CHEN Feng, WANG Huihu. Construction, Photocatalytic Performance Improvement and Application of Metal Sulfide/g-C3N4 Heterojunctions. Materials Reports, 2022, 36(10): 20100188-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100188  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20100188
1 Balajka J, Hines M A, DeBenedetti W J I, et al. Science, 2018, 361(6404), 786.
2 Hu H P, Hu J S, Wang X Y, et al. Catalysis Science & Technology, 2020, 10(14), 4712.
3 Zhang W H, Dian L W, Chen H Y,et al. Chemical Industry and Engineering Progress, 2020, 39(2), 521 (in Chinese).
张文华, 佃丽雯, 陈海燕, 等. 化工进展, 2020, 39(2), 521.
4 Buzzetti L, Crisenza G E M, Melchiorre P. Angewandte Chemie International Edition, 2019, 58(12), 3730.
5 Li H T, Wang M, Wei Y P, et al. Journal of Colloid and Interface Science, 2019, 534, 343.
6 Wang J, Li Y Y, Deng L, et al. Advanced Materials, 2017, 29(3), 1603730.
7 Ren Y J, Zeng D Q, Ong W J. Chinese Journal of Catalysis, 2019, 40(3), 289.
8 Xu C P, Anusuyadevi P R, Aymonier C, et al. Chemical Society Reviews, 2019, 48(14), 3868.
9 Wang Z, Li C, Domen K. Chemical Society Reviews, 2019, 48(7), 2109.
10 Hao L, Kang L, Huang H W, et al. Advanced Materials, 2019, 31(25), 1900546.
11 Meng A Y, Zhang L Y, Cheng B, et al. Advanced Materials, 2019, 31(30), 1807660.
12 Guo Q, Zhou C Y, Ma Z B, et al. Advanced Materials, 2019, 31(50), 1901997.
13 Liu J, Wang P L, Qu W Q, et al. Applied Catalysis B: Environmental, 2019, 257, 117880.
14 HernáNdez-Carrillo M A, Torres-RicáRdez R, GarcíA-Mendoza M F, et al. Catalysis Today, 2018, 349, 191.
15 Yang M Q , Gao M M, Hong M H, et al. Advanced Materials, 2018, 30(47), 1870363.
16 Wang W N, Huang C X, Zhang C Y, et al. Applied Catalysis B: Environmental, 2018, 224, 854.
17 Lu Y , Li Y, Wang Y , et al. Applied Catalysis B: Environmental, 2020, 272, 118979.
18 Magdalena M, Mikolajczyk A, Bajorowicz B, et al. Applied Catalysis B: Environmental, 2020, 272, 118962.
19 Huang H M, Xu B, Tan Z K, et al. Journal of Alloys and Compounds, 2020, 833, 155057.
20 Nagamine M, Osial M, Jackowska K, et al. Journal of Marine Science and Engineering, 2020, 8(7), 483.
21 Ye L J, An X Y, Jiang Y J, et al. Chemical Industry and Engineering Progress, 2015, 34(11), 3944 (in Chinese).
叶林静, 安小英, 姜韵婕, 等. 化工进展, 2015, 34(11), 3944.
22 Chandrasekaran S, Yao L, Deng L, et al. Chemical Society Reviews, 2019, 48(15), 4178.
23 Ismael M. Journal of Alloys and Compounds, 2020, 846, 156446.
24 Huang J X, Li D G, Li R B, et al. Chemical Engineering Journal, 2019, 374, 242.
25 Zhang R, Bi L L, Wang D, et al. Journal of Colloid and Interface Science, 2020, 578, 431.
26 Chang C, Huang X Y, Wang Q. Journal of Chongqing University of Technology (Natural Science), 2021, 35(12), 198 (in Chinese).
常春,黄心悦,王琼. 重庆理工大学学报(自然科学),2021,35(12),198.
27 Zhou X, Zou J, Zhang S, et al. Chinese Journal of Catalysis, 2017, 38(2), 287.
28 Yang X X, Xin W Y, Yin X H, et al. Chemical Physics Letters, 2016, 651, 127.
29 Xia Y, Cheng B, Fan J J, et al. Science China Materials, 2020, 63(4), 552.
30 Xue B, Jiang H Y, Sun T, et al. Materials Letters, 2018, 228, 475.
31 Liu Y, Gao S W, Wang L J, et al. Chinese Journal of Environmental Engineering, 2019, 13(4), 818 (in Chinese).
刘阳, 高生旺, 王丽君, 等. 环境工程学报, 2019, 13(4), 818.
32 Xu M Q, Chai B, Yan J T, et al. Chinese Journal of Inorganic Chemistry, 2017, 33(3), 389 (in Chinese).
徐梦秋, 柴波, 闫俊涛, 等. 无机化学学报, 2017, 33(3), 389.
33 Yang D, Zhou Z Y, Ding F,et al.Chemical Industry and Engineering Progress, 2019, 38(1), 502 (in Chinese).
杨冬, 周致远, 丁菲, 等. 化工进展, 2019, 38(1), 502.
34 Zhao D M, Dong C L, Wang B, et al. Advanced Materials, 2019, 31(43), 1903545.
35 Cui Q L, Xu J S, Wang X Y, et al. Angewandte Chemie International Edition, 2016, 128(11), 3736.
36 Ji C, Du C, Steinkruger J D, et al. Materials Letters, 2019, 240, 128.
37 Xue B, Jiang H Y, Sun T, et al. Materials Letters, 2018, 228, 475.
38 Liang Z Q, Yang S R, Wang X Y, et al. Applied Catalysis B: Environmental, 2020, 274, 119114.
39 Pourshirband N, Nezamzadeh-Ejhieh A, Mirsattari S N. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2021, 248, 119110.
40 Jia T K, Fu F, Li J L, et al. Applied Surface Science, 2020, 499, 143941.
41 Cao Y Z, Li Q, Wang W. RSC Advances, 2017, 7(10), 6131.
42 Chen W, Hua Y X, Wang Y, et al. Journal of Catalysis, 2017, 349, 8.
43 Li X X, Xie K Y, Song L, et al. ACS Applied Materials & Interfaces, 2017, 9(29), 24577.
44 Hu S Z, Li Y M, Li F Y, et al. ACS Sustainable Chemistry & Enginee-ring, 2016, 4(4), 2269.
45 Jing L Q, Xu Y G, Chen Z G, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(4), 5132.
46 Chen J S, Mao C J, Niu H L, et al. Beilstein Journal of Nanotechnology, 2019, 10(1), 912.
47 Yang H C, Cao R Y, Sun P X, et al. Applied Catalysis B: Environmental, 2019, 256, 117862.
48 Kim W J, Jang E, Park T J. Applied Surface Science, 2017, 419, 159.
49 Zhang J Y, Wang Y H, Jin J, et al. ACS Applied Materials & Interfaces, 2013, 5(20), 10317.
50 Liu X M, Liu Y, Zhang W K, et al. Materials Science in Semiconductor Processing, 2020, 105, 104734.
51 Li W B, Wang L, Zhang Q, et al. Journal of Alloys and Compounds, 2019, 808, 151681.
52 Song Y H, Gu J M, Xia K X, et al. Applied Surface Science, 2019, 467, 56.
53 Jia T K, Fu F, Li J L, et al. Applied Surface Science, 2020, 499, 143941.
54 Lu D Z, Wang H M, Zhao X N, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(2), 1436.
55 Jo W K, Selvam N C S. Chemical Engineering Journal, 2017, 317, 913.
56 Ye W H, Hu J S, Hu X F, et al. ChemCatChem, 2019, 11(24), 6372.
57 Zou Y J, Shi J W, Ma D D, et al. ChemCatChem, 2017, 9(19), 3752.
58 Ma S S, Song Y P, Xu P, et al. Materials Letters, 2018, 213, 370.
59 Xu Q L, Zhang L Y, Cheng B, et al. Chem, 2020, 6(7), 1542.
60 Qin D R, Xia Y, Li Q, et al. Journal of Materials Science & Technology, 2020, 56, 206.
61 Chen Y L, Su F Y, Xie H Q, et al. Chemical Engineering Journal, 2020, 404, 126498.
62 Liu Y, Zhang H Y, Ke J, et al. Applied Catalysis B: Environmental, 2018, 228, 64.
63 Zhu A Q, Qiao L L, Jia Z Q , et al. Dalton Transactions, 2017, 46(48), 17032.
64 Shao B B, Liu X X, Liu Z F, et al. Chemical Engineering Journal, 2019, 374, 479.
65 Tonda S, Kumar S, Gawli Y, et al. International Journal of Hydrogen Energy, 2017, 42(9), 5971.
66 Lin B, Li H, An H, et al. Applied Catalysis B: Environmental, 2018, 220, 542.
67 Yuan Y J, Shen Z K, Wu S T, et al. Applied Catalysis B: Environmental, 2019, 246, 120.
68 Che H N, Che G B, Zhou P J, et al. Journal of Colloid and Interface Science, 2019, 546, 262.
69 Zou Y J, Shi J W, Sun L W, et al. Chemical Engineering Journal, 2019, 378, 122192.
70 Chen W, He Z C, Huang G B, et al. Chemical Engineering Journal, 2019, 359, 244.
71 Guo F, Shi W L, Li M Y, et al. Separation and Purification Technology, 2019, 210, 608.
72 Song Y H, Gu J M, Xia K X, et al. Applied Surface Science, 2019, 467, 56.
73 Qin Y Y, Li H, Lu J, et al. Applied Catalysis B: Environmental, 2020, 277, 119254.
74 Li D P, Hao F F, Yu X G, et al. Materials Chemistry and Physics, 2019, 233, 145.
75 Basheva E S, Kralchevsky P A, Danov K D, et al. Journal of Colloid and Interface Science, 2020, 577, 1.
76 Shen Q H, Bibi R, Wei L F, et al. International Journal of Hydrogen Energy, 2019, 44(29), 14550.
77 Wang X, Hong M Z, Zhang F W, et al. ACS Sustainable Chemistry & Engineering, 2016, 4(7), 4055.
78 Bai J R, Lv W H, Ni Z J, et al. Journal of Alloys and Compounds, 2018, 768, 766.
79 Dong G, Qiu P, Meng F Y, et al. Chemical Engineering Journal, 2020, 384, 123330.
80 Jourshabani M, Shariatinia Z, Achari G, et al. Journal of Materials Chemistry A, 2018, 6(27), 13448.
81 Tian W, Shen Q H, Li N X, et al. RSC Advances, 2016, 6(30), 25568.
82 Hao X Q, Zhou J, Cui Z W, et al. Applied Catalysis B: Environmental, 2018, 229, 41.
83 Yan Y J, Yang M, Wang C J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123861.
84 Wang L J, Zhou G, Tian Y, et al. Applied Catalysis B: Environmental, 2019, 244, 262.
85 Gao Z Q, Chen K Y, Wang L, et al. Applied Catalysis B: Environmental, 2020, 268, 118462.
86 Chen F, Yang H, Wang X F, et al. Chinese Journal of Catalysis, 2017, 38(2), 296 (in Chinese).
陈峰, 杨慧, 王雪飞, 等.催化学报, 2017, 38(2), 296.
87 Lu L L, Xu X X, An K L, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6(9), 11869.
88 Wang H, Zhao Y M, Wang Y X, et al. Journal of Functional Materials, 2017, 48(7), 7149 (in Chinese).
王浩, 赵艺蒙, 王愉雄, 等.功能材料, 2017, 48(7), 7149.
89 Fu J W, Bie C B, Cheng B, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(2), 2767.
90 Fu J, Jiang K, Qiu X, et al. Materials Today, 2020, 32, 222.
91 Qin H, Guo R T, Liu X Y, et al. Dalton Transactions, 2018, 47(42), 15155.
92 Liang M F, Borjigin T, Zhang Y H, et al. ACS Applied Materials & Interfaces, 2018, 10(40), 34123.
93 Kong L, Li Z C, Huang S Q, et al. Applied Catalysis B: Environmental, 2017, 204, 403.
94 Tsuji I, Kato H, Kudo A. Chemistry of Materials, 2006, 18(7), 1969.
95 Li G M, Wang B, Zhang J, et al. Applied Surface Science, 2019, 478, 1056.
96 Diarmand-Khalilabad H, Habibi-Yangjeh A, Seifzadeh D, et al. Ceramics International, 2019, 45(2), 2542.
97 Hu X Y, Zeng X K, Liu Y, et al. Applied Catalysis B: Environmental, 2020, 268, 118466.
98 Ding H Y, Han D L, Han Y J, et al. Journal of Hazardous Materials, 2020, 393, 122423.
99 Zhang X Y, Liu S G, Zhang W J, et al. Sensors and Actuators B: Chemical, 2019, 297, 126818.
100 Zhang K, Lyu S, Zhou Q, et al. Sensors and Actuators B: Chemical, 2020, 307, 127631.
[1] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[2] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[3] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[4] 胡绍争, 王菲, 李政, 马宏飞, 李萍. 新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究[J]. 材料导报, 2021, 35(8): 8011-8016.
[5] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[6] 丁同悦, 陈奕桦, 胡俊俊, 杨本宏, 黄智锋. CeO2/Bi24O31Br10异质结构的制备及可见光催化性能[J]. 材料导报, 2021, 35(22): 22011-22015.
[7] 夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
[8] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[9] 罗凯怡, 袁欢, 刘禹彤, 张嘉羲, 张秋平, 王笑乙, 胡文宇, 李靖, 徐明. Ag沉积的ZnO∶Cu纳米颗粒的制备及高效光催化研究[J]. 材料导报, 2020, 34(4): 4013-4019.
[10] 汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
[11] 黄国富, 刘坤, 王忠凯, 宋蓉蓉, 朱颖, 汤睿, 张寒冰, 童张法. SDBS诱导磁性花球状SDBS/BiOBr-MB的制备及其增强的可见光催化性能[J]. 材料导报, 2020, 34(22): 22024-22029.
[12] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[13] 乔帅, 赵朝成, 贺凤婷, 赵洪飞, 董培, 林飞飞, 台兆鑫. 原位沉积法制备g-C3N4/Ag3PO4复合光催化剂降解卡马西平的性能研究[J]. 材料导报, 2020, 34(19): 19010-19017.
[14] 李玉佩, 王晓静, 赵君, 胡秋月, 王利勇, 成永强. 零维/二维Bi2S3/g-C3N4异质结的原位构建及光催化性能[J]. 材料导报, 2020, 34(15): 15033-15038.
[15] 栗思琪, 鲁浈浈, 张琪. 碱金属及碱土金属掺杂石墨相-C3N4光催化材料研究进展[J]. 材料导报, 2020, 34(15): 15039-15046.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed