Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13041-13051    https://doi.org/10.11896/cldb.20010069
  无机非金属及其复合材料 |
钠离子电池金属硫化物负极材料的研究进展
夏广辉, 王丁*, 李雪豹, 董鹏, 张英杰, 王皓逸
昆明理工大学冶金与能源工程学院,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,昆明 650093
Recent Research Progress of Metal Sulfides as Anode Materials for Sodium Ion Batteries
XIA Guanghui, WANG Ding*, LI Xuebao, DONG Peng, ZHANG Yingjie, WANG Haoyi
Key Laboratory of Advanced Battery Materials of Yunnan Province, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Pre-paration Technology, School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 12295KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于全球有限的锂资源无法满足巨大的能源市场需求,而钠元素与锂元素处于同一主族,其性质相似,且钠具有资源丰富以及成本低等优势,使得钠离子电池有望成为极具发展前景的储能装置。但是,钠离子电池存在以下劣势:(1)钠元素的相对分子质量大于锂元素,致使其理论能量密度低于锂离子电池;(2)钠离子半径大于锂,充放电过程中钠离子脱嵌困难。因此,电极材料的合理设计与高效合成是提升钠离子电池性能和降低成本的关键。目前,钠离子电池的研究进展较快并取得了一定的成果,研究热点主要集中在钠离子嵌入机理、电池能量密度提升、循环性能改善等方面。金属硫化物种类丰富,具有相对较高的理论比容量和能量密度,适合用作储能钠离子电池负极材料。但金属硫化物自身存在导电性差、体积膨胀剧烈、首次库伦效率低、钠离子扩散缓慢等缺点,同时电池的性能又取决于电极材料的形貌、结构和颗粒尺寸等。因此,需对材料进行一系列结构调控以及相应机理研究来提高其电化学性能。本文主要从纳米形貌调控和材料复合两个方面对金属硫化物最新的研究进展进行综合概述,并对钠离子电池金属硫化物负极材料的未来发展方向进行了评述及展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏广辉
王丁
李雪豹
董鹏
张英杰
王皓逸
关键词:  钠离子电池  负极材料  金属硫化物  纳米化结构调控  材料复合    
Abstract: The huge discrepancy between the worldwide supply-both existent and potential-and the tremendous energy market demand for sodium resources has been motivating the attempts of seeking substitutes for lithium-based electrochemical energy storage systems, in which sodium ion batteries are now expected to become one of the promising candidates. Belonging to the same main group in the periodic table, sodium element boasts excellent chemical properties similar to lithium element, and is even more competitive in reserves and cost. But, on the other side, sodium ion batteries also have its disadvantages: (1) higher ion weight which renders its theoretical energy density lower than that of lithium ion battery; (2) larger radius which makes sodium ions more difficult to be intercalated and deintercalated during the charge and discharge processes. Thus reasonable design and efficient synthesis of electrode materials are the key factors to increase the electrochemical performance and reduce the cost of sodium ion batteries. At present the global researches on sodium ion batteries are mainly concentrated on the mechanism of sodium ion insertion and the improvement in energy density as well as cycle performance. The large variety of metal sulfides have been proved to possess large theoretical capacity and high energy density and suitable to serve as anode material of sodium ion batteries, though they still have obvious deficiencies such as poor conductivity, severe volume expansion, low first coulomb efficiency, and slowly diffusion coefficient. Moreover, systematical works on the structural regulation and corresponding mechanisms are also necessary, because the performance of battery depends on, besides chemical composition, morphology, structure and particle size of the electrode material. This paper provides mainly a summary of the latest research progress on metal sulfides from the aspects of nano-structure regulation and material compounding, as well as a prospective discussion of the future development trends.
Key words:  sodium ion battery    anode material    metal sulfide    nanostructure control    material compound
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  O646.54  
基金资助: 国家自然科学基金(51804149;51904135);云南省应用基础研究基金(2018FD039;2019FB076);国家重点研发项目(2018YFB0104000)
作者简介:  夏广辉,2018年6月毕业于重庆科技学院,获得工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生。目前主要研究领域为新能源材料。
王丁,昆明理工大学冶金与能源工程学院副教授。2016年6月毕业于中南大学,获工学博士学位,同年加入锂离子电池及材料制备技术国家地方联合工程实验室工作至今。主要从事高镍三元正极材料基础研究及产业化。
引用本文:    
夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
XIA Guanghui, WANG Ding, LI Xuebao, DONG Peng, ZHANG Yingjie, WANG Haoyi. Recent Research Progress of Metal Sulfides as Anode Materials for Sodium Ion Batteries. Materials Reports, 2021, 35(13): 13041-13051.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010069  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13041
1 Chu S, Majumdar A. Nature,2012,488,294.
2 Dunn B, Kamath H, Tarascon J M. Science,2011,334,928.
3 Greeley J, Jaramillo T F, Bonde J,et al. Nature Materials,2006,5,909.
4 Kang Y J, Yang P D, Markovic N M, et al. Nano Today,2016,11,587.
5 Chiang Y M. Science,2010,330,1485.
6 Anantharaj S, Ede S R, Sakthikumar K, et al. ACS Catalysis,2016,6,8069.
7 Yan Y, Xia B Y, Zhao B, et al. Journal of Materials Chemistry A,2016,4,17587.
8 Yu Z N, Tetard L, Zhai L,et al. Energy & Environmental Science,2015,8,702.
9 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials,2012,11,19.
10 Jung H G, Hassoun J, Park J B,et al. Nature Chemistry,2012,4,579.
11 Xie F, Zhang L, Su D,et al. Advanced Materials,2017,29,1700989.
12 Qu K G, Zheng Y, Jiao Y,et al. Advanced Energy Materials,2017,7,1602068.
13 Duan J J, Chen S, Vasileff A,et al. Nano,2016,10,8738.
14 Zhang K Y, Yao Y C. Chemical Industry and Engineering Progress,2015,34(1),166(in Chinese).
张克宇,姚耀春.化工进展,2015,34(1),166.
15 Lee S Y, Kim J H, Kang Y C. Electrochimica Acta,2017,225,86.
16 Xiong X, Wang G, Lin Y, et al. ACS Nano,2016,10,109520959.
17 Sun R M. Transition metal sulfide nanostructured electrode materials: controlled synthesis and electrochemical properties. Ph.D. Thesis, Wuhan University of Technology, China,2018(in Chinese).
孙睿敏.过渡金属硫化物储能电极材料设计制备及电化学性能研究.博士学位论文,武汉理工大学,2018.
18 Kang H, Liu Y, Cao K, et al. Journal of Materials Chemistry A,2015,3(35),17899.
19 Ou X. Preparation and electrochemical performance of metal chalcogenides anode materials for sodium ion batteries. Ph.D. Thesis, South China University of Technology, China,2018(in Chinese).
欧星.钠离子电池负极材料金属硫族化合物的制备及性能研究.博士学位论文,华南理工大学,2018.
20 Xiao N, Pan Y, Song Y, et al. Journal of Inorganic Materials,2018,33(5),494(in Chinese).
肖娜,潘洋,宋云,等.无机材料学报.2018,33(5),494.
21 Lai C H, Lu M Y, Chen L J. Journal of Materials Chemistry,2012,22,19.
22 Chen Y M, Yu X Y, Li Z, et al. Science Advances,2016,2,e1600021.
23 Kong S F, Jin Z T, Liu H, et al. Chemical Communications,2014,118,25355.
24 Yu X Y, Hu H, Wang Y W,et al. Angewandte Chemie International Edition,2015,54,7395.
25 Yu X Y, Yu L, Lou X W. Advanced Energy Materials,2016,6,1501333.
26 Acerce M, Voiry D, Chhowalla M. Nature Nanotechnology,2015,10,313.
27 Ding P. Preparation and electrochemical performance of metal sulfide nanostructures. Ph.D. Thesis, Qingdao University of Science and Technology, China,2018(in Chinese).
丁鹏.金属硫化物纳米结构的制备与电化学性能研究.博士学位论文,青岛科技大学,2018.
28 Zhao W, Ci S, Hu X,et al. Nanoscale,2019,11,4688.
29 Zhu T, Chen J S, Lou X W. Journal of Physical Chemistry C,2011,115(19),9814.
30 Lin Y M, Abel P R, Heller A, et al. Journal of Physical Chemistry Letters,2015,2(2),2885.
31 Li X, Dhanabalan A, Wang C. Journal of Power Sources,2011,196(22),9625.
32 Hu Z, Wang L, Zhang K, et al. MoS2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries. Angewandte Chemie International Edition,2014,126(47),13008.
33 Wu J, Huang X, Xia X. Journal of Energy Chemistry,2019,35,132.
34 Wang J, Luo N, Wu J,et al. Journal of Materials Chemistry A,2019,7,3691.
35 Li Y, Chang K, Shangguan E,et al. Nanoscale,2019,11,1887.
36 Hu Z, Tai Z, Liu Q, et al. Advanced Energy Materials,2019,9,1803210.
37 Su H Y, Seung-Keun P, Jin K K,et al. Journal of Materials Chemistry A,2019,7,13751.
38 Fang Y, Yu X, Lou X. Angewandte Chemie International Edition,2019,131,7826.
39 Wang J, Han L, Li X, et al. Journal of Colloid and Interface Science,2019,548,20.
40 Yu D, Li M, Yu T, et al. Journal of Materials Chemistry A,2019,7,10619.
41 Hu R, Zhao H, Zhang J,et al. Nanoscale,2019,11,178.
42 Sun R M, Liu S J, Wei D,et al. Small,2017,13,1701744.
43 Liu G L, Cui J, Luo R J,et al. Applied Surface Science,2019,469,854.
44 Chen G, Yao X, Cao Q,et al. Materials Letters,2019,234,121.
45 Lin Z, Xiong X, Fan M D, et al. Nanoscale,2019,11,3773.
46 Chen Q, Sun S, Zhai D T,et al. Advanced Energy Materials,2018,8,1800054.
47 Zhang Y, Zhan R, Xu Q, et al. Chemical Engineering Journal,2019,357,220.
48 Fang Y, Guan B, Luan D, et al. Angewandte Chemie International Edition,2019,131,7821.
49 Xia Q, Tan Q. Electrochimica Acta,2019,308,217.
50 Bu F, Xiao P, Chen J,et al. Journal of Materials Chemistry A,2018,6,6414.
51 Zhao J, Wang G, Hu R, et al. Journal of Materials Chemistry A,2019,7,4047.
52 Zhang X Q, Li X N, Liang J W,et al. Small,2016,12,2484.
53 Li J, Li J, Yan D, et al. Journal of Materials Chemistry A,2018,10,1039.
54 Zhao W, Ci S, Hu X, et al. Nanoscale,2019,10,1039.
55 Song Y, Liao J, Chen C,et al. Carbon,2019,142,697.
[1] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[2] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[3] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[4] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[5] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[6] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[7] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[8] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[9] 蓝彬栩, 张文卫, 罗平, 汤臣, 唐稳, 左春丽, 董仕节, 陈丽能. 水系锌离子电池负极材料的研究进展[J]. 材料导报, 2020, 34(13): 13068-13075.
[10] 张英杰, 张举峰, 段建国, 任婷, 董鹏, 王丁. 钠离子电池Sb基负极材料的研究进展[J]. 材料导报, 2020, 34(11): 11106-11113.
[11] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[12] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[15] 杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed