Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13068-13075    https://doi.org/10.11896/cldb.19050206
  无机非金属及其复合材料 |
水系锌离子电池负极材料的研究进展
蓝彬栩1,†, 张文卫1,†, 罗平1, 汤臣1, 唐稳1, 左春丽1, 董仕节1,2, 陈丽能3
1 湖北工业大学材料与化学工程学院,武汉 430068
2 湖北经济学院,武汉 430205
3 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
Research Progress on Anode Materials for Aqueous Zinc-ion Batteries
LAN Binxu1,†, ZHANG Wenwei1,†, LUO Ping1, TANG Chen1, TANG Wen1, ZUO Chunli1, DONG Shijie1,2, CHEN Lineng3
1 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
2 Hubei University of Economics, Wuhan 430205, China
3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 5271KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二次电池由于具有高能量密度、宽电化学窗口和高可逆性等特点,得到了广泛的应用,然而传统二次电池使用的有机电解液成本高,且存在易燃、有毒等安全隐患。与有机电解液相比,水系电解液具备离子电导率高、功率密度高、生产条件简单和成本低等优点。因此,使用中性或弱酸性水系电解液的新型二次水系电池受到了越来越多研究人员的关注。其中,金属锌具有储量丰富、无毒、过电位低(-0.76 V)和理论容量高(820 mAh·g-1)等优点,使得水系可充电锌离子电池在大型储能系统中极具吸引力。
然而,金属锌作为负极会存在一些缺陷:如锌枝晶、库伦效率低、利用率不足等。其中锌枝晶往往与锌沉积/溶解不均匀有关,而库伦效率低和利用率不足则与锌电极的析氢反应和生成不可逆副产物有关。目前,研究人员对水系锌离子电池负极材料的研究主要集中在以下四个方面:(1)优化锌电极结构,将锌负极的结构设计为三维、多孔型,为锌的沉积/溶解提供更多的位点并限制锌枝晶等产物的生成;(2)添加剂的应用,将无机物或有机物添加到负极材料中,改变锌的析氢电位、腐蚀电位、极化行为,降低锌的析氢腐蚀,减少副产物等;(3)添加功能保护层,不仅提高金属锌的耐蚀性,而且能够引导锌的均匀沉积/溶解,抑制锌枝晶的生长;(4)添加导电剂,将导电剂添加到锌负极中,一方面可以提高电极的导电性,另一方面也可以促进Zn2+的均匀沉积/溶解。上述改性锌负极的方法能够有效抑制锌枝晶的生成,减少锌负极形变和提高金属锌的利用率,在一定程度上有效提高了水系锌离子电池的库伦效率和循环稳定性。
本文首先简单介绍了水系锌离子电池的结构,然后重点阐述了目前对水系锌离子电池负极材料的研究进展,包括锌负极材料面临的挑战和优化策略等方面。最后,本文对水系锌离子电池负极材料的发展前景进行了展望,为制备出具有优异性能的锌负极材料提供重要思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蓝彬栩
张文卫
罗平
汤臣
唐稳
左春丽
董仕节
陈丽能
关键词:  水系锌离子电池  锌负极材料  能量存储  锌枝晶    
Abstract: Secondary batteries have been widely applied due to their high energy density, wide electrochemical window, and highly reversible cycle, however, the organic electrolytes of traditional secondary batteries are expensive, flammable and toxic. Compared with organic electrolytes, aqueous electrolytes have the advantages of high ionic conductivity, high power density, simple manufacturing and low cost. Therefore, researchers pay more attentions to novel secondary aqueous batteries which using a neutral or weakly acidic inorganic-salt aqueous solution as electrolyte. In particular, metal zinc has been considered as promising anode material for large-scale energy storage owing to its abundant reserves, nontoxicity, low redox potential (-0.76 V) and high theoretical capacity (820 mAh·g-1). Hence, the rechargeable aqueous zinc ion batteries (AZIBs) is extremely attractive in recent years.
In fact, AZIBs still face the problems of the zinc dendritic, low plating/stripping columbic efficiency and insufficient utilization of zinc anode. The zinc dendritic usually originate from uneven Zn2+ distribution on the Zn foil, while low coulombic efficiency is caused by hydrogen evolution reaction of zinc electrode and generation of irreversible side-products. At present, the optimization of zinc anode materials for AZIBs have been focused on the following four points: (ⅰ) Optimizing the structure of the zinc electrode. Zinc negative electrode with 3D or porous type structure have more sites for zinc deposition/dissolution and limit the growth of zinc dendrite. (ⅱ) Application of additives. Adding inorganic or organic substances to the negative electrode material, which could change the hydrogen evolution potential, corrosion potential and polarization behavior of zinc, reduces hydrogen evolution corrosion of zinc and the formation of side-products, etc. (ⅲ) Formation of the functional protection layer. The protection layer is beneficial to the uniform deposition/dissolution of zinc and inhibits the growth of zinc dendrites. (ⅳ) Introducing the conductive material. On the one hand, the addition of a conductive material to the zinc negative electrode can improve the conductivity of the electrode; on the other hand, it will make for the uniform deposition/dissolution of zinc. These methods of modifying the zinc negative electrode can increase the stability of the anode material, so that the cycle stability and coulombic efficiency of AZIBs are effectively improved.
Firstly, this paper briefly introduces the structure and working principles of the AZIBs. Secondly, the research progress of anode materials for AZIBs has been mainly discussed by the following chapters,including the challenges and optimization strategies of zinc anode materials. Finally, this paper has made a promising prospect for the development of anode materials for AZIBs, which will provide important ideas for the preparation of zinc anode materials.
Key words:  aqueous zinc ion battery    zinc anode materials    energy storage    zinc dendritic
                    发布日期:  2020-06-24
ZTFLH:  TQ15  
基金资助: 国家自然科学基金 (51771071);湖北省教育厅科学研究指导项目(B2019046)
通讯作者:  blueknight_0930@163.com   
作者简介:  蓝彬栩,2017年6月毕业于郑州航空工业管理学院,获得工学学士学位。现为湖北工业大学材料与化学工程学院硕士研究生,在董仕节教授的指导下进行研究。目前主要研究领域为水系锌离子电池电极材料。
张文卫,2018年6月毕业于湖北汽车工业学院,获得工学学士学位。现为湖北工业大学材料与化学工程学院硕士研究生,在董仕节教授和罗平老师的指导下进行研究。目前的主要研究领域为水系锌离子电池电极材料的开发。
罗平,湖北工业大学讲师,2015年6月获得华中科技大学材料加工工程专业博士学位,同年进入湖北工业大学工作至今,主要从事新能源材料方面的研究。在国内外重要期刊发表文章20余篇,申报发明专利近30余项。
引用本文:    
蓝彬栩, 张文卫, 罗平, 汤臣, 唐稳, 左春丽, 董仕节, 陈丽能. 水系锌离子电池负极材料的研究进展[J]. 材料导报, 2020, 34(13): 13068-13075.
LAN Binxu, ZHANG Wenwei, LUO Ping, TANG Chen, TANG Wen, ZUO Chunli, DONG Shijie, CHEN Lineng. Research Progress on Anode Materials for Aqueous Zinc-ion Batteries. Materials Reports, 2020, 34(13): 13068-13075.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050206  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13068
1 Larcher D, Tarascon J M. Nature Chemistry, 2015, 7(1), 19.
2 Bruce D, Haresh K, Jean-Marie T. Science, 2011, 334(6058), 928.
3 Yang Z, Zhang J, Kintner-Meyer M C W, et al. Chemical Reviews, 2011, 111(5), 3577.
4 Li G, Jin Y, Akram M W, et al. Renewable and Sustainable Energy Reviews, 2017, 79, 440.
5 Marom R, Ziv B, Banerjee A, et al. Journal of Power Sources, 2015, 296, 78.
6 Rahangdale D, Kumar A. Journal of Environmental Chemical Enginee-ring, 2018, 6(2), 1828.
7 Garche J, Moseley P T, Karden E. Advances in Battery Technologies for Electric Vehicles, Woodhead Publishing, Germany,2015.
8 Saw L H, Ye Y, Tay A A O. Journal of Cleaner Production, 2016, 113, 1032.
9 Tarascon J M, Armand M. Nature, 2001, 414(6861),359.
10 Nitta N, Wu F, Lee J T, et al. Materials Today, 2015, 18(5), 252.
11 Hertzberg B J, Huang A, Hsieh A, et al. Chemistry of Materials, 2016, 28(13), 4536.
12 Ozgit D, Hiralal P, Amaratunga G A. ACS Applied Materials & Interfaces, 2014, 6(23), 20752.
13 Long J, Yang Z, Huang J, et al. Journal of Power Sources, 2017, 359, 111.
14 Lee D U, Choi J Y, Feng K, et al. Advanced Energy Materials, 2014, 4(6), 1301389.
15 Chen L, Ruan Y, Zhang G, et al. Chemistry of Materials, 2019, 31(3), 699.
16 Yan M, He P, Chen Y, et al. Advanced Materials, 2018, 30(1), 1703725.
17 Chen L N,Yan M Y,Mei Z W, et al. Journal of Inorganic Materials, 2017,32(3),225(in Chinese).
陈丽能, 晏梦雨, 梅志文, 等. 无机材料学报, 2017, 32(3), 225.
18 Xia C, Guo J, Li P, et al. Angewandte Chemie International Edition, 2018, 57(15), 3943.
19 Jiang B, Xu C, Wu C, et al. Electrochimica Acta, 2017, 229, 422.
20 Xu C, Li B, Du H, et al. Angewandte Chemie International Edition, 2012, 51(4), 933.
21 Chen L N, An Q Y, Mai L Q. Advanced Materials Interfaces, 2019, 6(17),1900387.
22 Song M, Tan H, Chao D, et al. Advanced Functional Materials, 2018, 28(41), 1802564.
23 Fang G, Zhou J, Pan A, et al. ACS Energy Letters, 2018, 3(10), 2480.
24 Konarov A, Voronina N, Jo J H, et al. ACS Energy Letters, 2018, 3(10), 2620.
25 Zhang B, Liu Y, Wu X, et al. Chemical Communications, 2014, 50(10), 1209.
26 Kaveevivitchai W, Manthiram A. Journal of Materials Chemistry A, 2016, 4(48), 18737.
27 Li G, Yang Z, Jiang Y, et al. Journal of Power Sources, 2016, 308, 52.
28 Guo Z, Ma Y, Dong X, et al. Angewandte Chemie International Edition, 2018, 57(36), 11737.
29 Wan F, Zhang L, Dai X, et al. Nature Communications, 2018, 9(1), 1656.
30 Zhu C, Fang G, Zhou J, et al. Journal of Materials Chemistry A, 2018, 6(20), 9677.
31 Peng Z, Wei Q, Tan S, et al. Chemical Communications, 2018, 54(32), 4041.
32 Hu P, Zhu T, Wang X, et al. Nano Energy, 2019, 58, 492.
33 Lai J, Zhu H, Zhu X, et al. ACS Applied Energy Materials, 2019, 2(3), 1988.
34 Lan B X, Peng Z, Chen L N, et al. Journal of Alloys and Compounds, 2019, 787, 9.
35 Zhang N, Cheng F, Liu J, et al. Nature Communications, 2017, 8(1), 405.
36 Xu M, Ivey D G, Xie Z, et al. Journal of Power Sources, 2015, 283, 358.
37 Zhu X, Doan T N L, Yu Y, et al. Ionics, 2016, 22(1), 71.
38 Yu S L, Yu X H, Lü X, et al. Chinese Journal of Power Sources, 2018, 42(10), 1585(in Chinese).
俞双林, 俞小花, 吕祥, 等.电源技术, 2018, 42(10), 1585.
39 Fu J, Cano Z P, Park M G, et al. Advanced Materials, 2017, 29(7), 1604685.
40 Mainar A R, Iruin E, Colmenares L C, et al. Journal of Energy Storage, 2018, 15, 304.
41 Kang Z, Wu C, Dong L, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(3), 3364.
42 Gupta T, Kim A, Phadke S, et al. Journal of Power Sources, 2016, 305, 22.
43 Lu K, Song B, Zhang J, et al. Journal of Power Sources, 2016, 321, 257.
44 Chae M, Hong S T. Batteries, 2019, 5(1), 3.
45 Li H, Xu C, Han C, et al. Journal of the Electrochemical Society, 2015, 162(8), A1439.
46 Wang L P, Li N W, Wang T S, et al. Electrochimica Acta, 2017, 244, 172.
47 Dong W, Shi J L, Wang T S, et al. RSC Advances, 2018, 8(34), 19157.
48 Shen C, Li X, Li N, et al. ACS Applied Materials & Interfaces, 2018, 10(30), 25446.
49 Xia A, Pu X, Tao Y, et al. Applied Surface Science, 2019, 481, 852.
50 Li W, Wang K, Cheng S, et al. Energy Storage Materials, 2018, 15, 14.
51 Kang L, Cui M, Jiang F, et al. Advanced Energy Materials, 2018, 8(25), 1801090.
52 Zhao K, Wang C, Yu Y, et al. Advanced Materials Interfaces, 2018, 5(16), 1800848.
53 Li H F. Study on preparation and performance of zinc anode materials for zinc ion batteries. Master’s Thesis, Tsinghua University, China, 2012(in Chinese).
李洪飞. 锌离子电池锌负极材料的制备及性能研究. 硕士学位论文,清华大学,2012.
54 Zhao Z, Zhao J, Hu Z, et al. Energy & Environmental Science, 2019,12, 1938.
55 Sun K E K, Hoang T K A, Doan T N L, et al. Chemistry, 2018, 24(7), 1667.
56 Sun K E, Hoang T K, Doan T N, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 9681.
57 Bani Hashemi A, Kasiri G, Glenneberg J, et al. ChemElectroChem, 2018, 5(15), 2073.
58 Higashi S, Lee S W, Lee J S, et al. Nature Communications, 2016, 7, 11801.
59 Chao D, Zhu C R, Song M, et al. Advanced Materials, 2018, 30(32), e1803181.
60 Zhou Z, Zhang Y, Chen P, et al. Chemical Engineering Science, 2019, 194, 142.
[1] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[2] 张文魁, 王佳, 李姣姣, 周晓政, 叶张军, 黄辉, 甘永平, 夏阳. 高安全性PEO-Al2O3复合隔膜的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3512-3519.
[3] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[4] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[5] 周存, 秦兆立, 王闻宇, 金欣, 林童, 朱正涛. 动力/储能锂离子电池隔膜制备先进技术及研究进展[J]. 材料导报, 2018, 32(23): 4051-4060.
[6] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[7] 孙东健,杨建校,马国芝,周娩红,刘洪波. 中间相沥青基石墨纤维表面化学镀铜及性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 129-132.
[8] 李冰洁, 江旭东, 潘春旭. 铜锡青铜合金腐蚀过程中的电化学与微结构特征研究*[J]. 《材料导报》期刊社, 2017, 31(11): 138-143.
[9] 王炯, 徐瑞东, 于伯浩, 韩莎, 何世伟, 陈步明. PbO2-MnO2共沉积电化学行为研究*[J]. 《材料导报》期刊社, 2017, 31(8): 35-40.
[10] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[11] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[12] 张英杰, 张举峰, 段建国, 任婷, 董鹏, 王丁. 钠离子电池Sb基负极材料的研究进展[J]. 材料导报, 2020, 34(11): 11106-11113.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed