Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 129-132    https://doi.org/10.11896/j.issn.1005-023X.2017.024.026
  材料研究 |
中间相沥青基石墨纤维表面化学镀铜及性能表征
孙东健,杨建校,马国芝,周娩红,刘洪波
湖南大学材料科学与工程学院,长沙 410082
Fabrication and Characterization of Copper-coated Mesophase Pitch-based Graphite Fibers by Electroless Copper Plating
SUN Dongjian, YANG Jianxiao, MA Guozhi, ZHOU Mianhong, LIU Hongbo
College of Materials Science and Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 682KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用化学镀法对中间相沥青基石墨纤维(MPGFs)进行镀铜,探究了镀液温度和pH值对镀铜工艺的影响,利用扫描电子显微镜-能谱仪(SEM-EDS)、X射线衍射仪(XRD)等表征了镀铜石墨纤维的表面形貌及成分,测试了其电阻率和镀铜层与石墨纤维的结合力。结果表明:当镀液温度为60 ℃、pH值为13.0时,MPGFs被均匀地镀上了一层致密的铜层,且两相之间结合良好。该镀铜石墨纤维的电阻率降低至7.52 μΩ·cm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙东健
杨建校
马国芝
周娩红
刘洪波
关键词:  中间相沥青基石墨纤维  化学镀  导电性能  结合力    
Abstract: The effects of temperature and pH value on electroless copper plating on mesophase pitch-based graphite fibers (MPGFs) were investigated in this work. The surface morphology and components of copper-coated MPGFs were characterized by scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD). And the resistivity and adhesion properties of copper-coated MPGFs were also measured. The results showed that MPGFs were coated by a dense and uniform copper layers when the temperature and pH value were 60 ℃ and 13.0. Moreover, the resistivity of copper-coated MPGFs with excellent adhesion decreased to 7.52 μΩ·cm.
Key words:  mesophase pitch-based graphite fibers    electroless plating    electrical conductivity    adhesion properties
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TQ153  
基金资助: 湖南省重大科技专项子课题(2013FJ1001-2)
通讯作者:  刘洪波:男,1958年生,博士,教授,博士研究生导师,主要研究方向为先进炭材料及复合材料 E-mail:hndxlhb@163.com   
作者简介:  孙东健:男,1991年生,硕士研究生,研究方向为炭纤维增强金属基复合材料制备和应用 E-mail:861596923@qq.com
引用本文:    
孙东健,杨建校,马国芝,周娩红,刘洪波. 中间相沥青基石墨纤维表面化学镀铜及性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 129-132.
SUN Dongjian, YANG Jianxiao, MA Guozhi, ZHOU Mianhong, LIU Hongbo. Fabrication and Characterization of Copper-coated Mesophase Pitch-based Graphite Fibers by Electroless Copper Plating. Materials Reports, 2017, 31(24): 129-132.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.026  或          https://www.mater-rep.com/CN/Y2017/V31/I24/129
1 Park S J, Jung W Y. Adsorption behaviors of chromium(Ⅲ) and (Ⅵ) on electroless Cu-plated activated carbon fibers[J]. J Colloid Interface Sci, 2001,243(2):316.
2 Morgan P. Carbon fibers and their composites[M]. New York:Taylor & Francis Group, 2005:534.
3 Chen D H, Yao G C, Cao Z K. A precious metal-free electroless technique for the deposition of copper on carbon fibers[J]. Metall Mater Trans A, 2012,43(11):4194.
4 Liu L, Tang Y P, Zhao H J, et al. Fabrication and properties of short carbon fibers reinforced copper matrix composites[J]. J Mater Sci, 2008,43(3):974.
5 Tang Y P, Liu H Z, Zhao H J, et al. Friction and wear properties of copper matrix composites reinforced with short carbon fibers[J]. Mater Des, 2008,29(1):257.
6 Neubauer E, Korb G, Eisenmenger-Sittner C, et al. The influence of mechanical adhesion of copper coatings on carbon surfaces on the interfacial thermal contact resistance[J]. Thin Solid Films, 2003,433(1-2):160.7 Schrank C, Eisenmenger-Sittner C, Neubauer E, et al. Solid state de-wetting observed for vapor deposited copper films on carbon substrates[J]. Thin Solid Films, 2004,459(1):276.
8 Wan Y Z, Wang Y L, Luo H L, et al. Effects of fiber volume fraction, hot pressing parameters and alloying elements on tensile strength of carbon fiber reinforced copper matrix composite prepared by continuous three-step electrodeposition[J]. Mater Sci Eng A, 2000,288(1):26.
9 Lu W, Donepudi V S, Prakash J, et al. Electrochemical and thermal behavior of copper coated type MAG-20 natural graphite[J]. Electrochim Acta, 2002,47(10):1601.
10Barmouz M, Givi M K B, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior[J]. Mater Charact, 2011,62(1):108.
11Hou W, Pan G P, Guan H, et al. Optimization of process conditions for electroless copper plating on carbon fiber[J]. Electroplating Finishing, 2007,26(9):23(in Chinese).
侯伟,潘功配,关华,等.碳纤维表面化学镀铜工艺的优化[J].电镀与涂饰,2007,26(9):23.
12Chen H Y, Liu G L, Xu C J, et al. Copper@carbon fiber composites prepared by a simple electroless plating technique[J]. Mater Lett, 2016,173:211.
13Kang S S, Ji H, Gul H Z, et al. Metal-coated carbon fiber for lighter electrical metal wires[J]. Synth Met, 2016,222:180.
14Zhang H, Chao M, Zhang H, et al. Microstructure and thermal properties of copper matrix composites reinforced by chromium-coated discontinuous graphite fibers[J]. Appl Therm Eng, 2014,73(1):739.
15Silvain J F, Petitcorps Y L, Sellier E, et al. Elastic moduli, thermal expansion and microstructure of copper-matrix composite reinforced by continuous graphite fibres[J]. Composites, 1994,25(7):570.
16Nakahara S, Okinaka Y. Microstructure and mechanical properties of electroless copper deposits[J]. Mater Res, 1991,21(21):93.
17Donahue F M, Wong K L M, Bhalla R. Kinetics of electroless copper plating-4. Empirical rate law for H2CO-EDTA baths[J]. Electrochem Soc, 1980,127(11):2340.
18伍学高. 塑料电镀技术[M]. 成都:四川科学技术出版社, 1983:359.
19Guo R H, Jiang S Q, Yuen C W M, et al. An alternative process for electroless copper plating on polyester fabric[J]. J Mater Sci: Mater Electron, 2009,20(1):33.
20Cui X Y, Hutt D A, Conway P P. Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate[J].Thin Solid Films, 2012,520:6095.
21Tai Y, Chen H, Xu C, et al. Conductive glass fabrics@nickel composites prepared by a facile electroless deposition method[J]. Mater Lett, 2016,171:158.
22Sabayev V, Croitoru N, Inberg A, et al. The evolution and analysis of electrical percolation threshold in nanometer scale thin films deposited by electroless plating[J]. Mater Chem Phys, 2011,127(1):214.
23Zuo J D, Chen S J, Luo C Y, et al. Preparation of electroless copper coated glass fiber and piezoresistive properties of copper coated glass fiber reinforced plastics[J]. Appl Surf Sci, 2015,349:319.
[1] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[2] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[3] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[4] 张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
[5] 朱慧慧, 徐允良, 胡朝帅, 褚宏宇, 朱亚明, 程俊霞, 赵雪飞. 芳香类重质油基针状焦的制备及表征[J]. 材料导报, 2023, 37(11): 21070270-5.
[6] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[7] 王楠, 白晶莹, 李家峰, 冯立, 徐俊杰, 赫艳龙, 董俊伟, 崔庆新, 张立功. 聚酰亚胺薄膜表面导电金属层化学沉积技术研究[J]. 材料导报, 2022, 36(22): 22030280-6.
[8] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[9] 朱云娜, 高利霞, 熊彤彤, 杜婵, 张士民, 陈必清. 化学镀工艺制备高耐腐蚀性能的Ni-Co-B-Pr复合镀层[J]. 材料导报, 2021, 35(4): 4159-4164.
[10] 孙致平, 黄俊俊. 基于选择性印制活化液-化学镀制备区域金属化无纺布[J]. 材料导报, 2021, 35(24): 24195-24199.
[11] 张宇慧, 李大燕, 袁晨风, 金国, 房永超, 张丹. 金属Ni修饰的石墨烯及其对等离子喷涂NiCoCrAlY涂层力学性能的影响[J]. 材料导报, 2021, 35(10): 10141-10146.
[12] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[13] 栾吉瑜, 王保杰, 许道奎, 孙杰. 镁锂合金表面腐蚀防护研究进展[J]. 材料导报, 2020, 34(Z2): 441-446.
[14] 卢建红, 邓小梅, 阎建辉, 涂继国, 王明涌, 焦树强. 2,2′-联吡啶对化学铜二元络合剂体系沉积过程的影响[J]. 材料导报, 2020, 34(Z2): 539-542.
[15] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed