Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 133-140    https://doi.org/10.11896/j.issn.1005-023X.2017.024.027
  材料研究 |
工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响
杨 丹1,宁玉恒2,3,赵宇光2,朱国斌2,徐晓峰2
1 吉林农业大学工程技术学院,长春 130118;
2 吉林大学材料科学与工程学院,汽车材料教育部重点实验室,长春 130025;
3 大唐东北电力试验研究所有限公司,长春 130012
Influence of Processing Parameter on Microstructure, Wear-resistance and Corrosion-resistance of Laser Cladding Ni-based Alloy on the Surface of 304 Stainless Steel
YANG Dan1, NING Yuheng2,3, ZHAO Yuguang2, ZHU Guobin2, XU Xiaofeng2
1 College of Engineering and Technology, Jilin Agricultural University,Changchun 130118;
2 Key Laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025;
3 Datang Northeast Electric Power Test & Research Institute, Changchun 130012
下载:  全 文 ( PDF ) ( 1019KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了不同工艺参数对304不锈钢表面激光熔覆Ni基合金后熔覆层微观组织及硬度、耐磨、耐蚀性能的影响,并寻求最佳激光工艺参数,以期获得冶金结合较好,耐磨、耐蚀性能良好的熔覆层。根据组织与性能的综合分析可知,最优激光工艺参数为激光功率2.5 kW、扫描速度4 mm/s、送粉速率300 mg/s。利用优化工艺参数熔覆后的熔覆层宏观形貌平整、光滑,熔覆层宽度为14.36 mm,高度为1.612 mm,熔池深度为0.248 mm,稀释率为13.33,硬度较高,平均显微硬度为646.4HV,并且耐磨损性能较好,磨损量较低。此外,熔覆层的耐腐蚀性能也较好,自腐蚀电位为-286.77 mV。在一定的激光工艺参数下,组织从结合区至熔覆层表层依次为平面晶、胞状晶、柱状晶、树枝晶、等轴晶。激光功率、扫描速度、送粉速率不同,熔覆层中组织粗细变化呈现一定的规律性:随着激光功率的增大,组织由细小逐渐变的粗大;随着扫描速度的增大,组织先变细小,然后变粗大;随着送粉速率的增大,组织逐渐变细小。合金的耐磨性与耐蚀性不仅与组织大小有关,而且与组织物相组成密切相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨 丹
宁玉恒
赵宇光
朱国斌
徐晓峰
关键词:  304不锈钢  激光熔覆  工艺参数  组织结构    
Abstract: The effect of different processing parameter on the microstructure, wear-resistance and corrosion-resistance of laser cladding Ni-based alloy on the surface of 304 stainless steel was investigated. According to the analysis of the microstructure and mechanical properties, the optimized parameters were the laser power of 2.5 kW, the scanning speed of 4 mm/s and the powder feeding rate of 300 mg/s. The optimized parameters made the cladding layer smooth, and the cladding layer width was 14.36 mm, height was 1.612 mm, the depth of molten pool was 0.248 mm, and the dilution rate was 13.33. Moreover, the laser cladding made the hardness higher, and the average microhardness was 646.4HV, hence the abrasion loss was low. In addition, the corrosion resistance of cladding layer was improved, and the corrosion potential was of -286.77 mV. Under certain laser process parameters, the microstructure from the area to the cladding layer surface followed by planar crystal, the cellular crystal, columnar crystal, branches crystal and isometric crystal. Different laser power, scanning speed and feeding rate made the microstructure of cladding layer present certain regularity. With the increase of laser power, the microstructure gradually changed from fine to coarse. When scanning speed was improved, the microstructure became finer, and then turn coarse. Due to the increase of feeding rate, the microstructure gradually became finer. The wear resistance and corrosion resistance of the alloy were not only related to the size of the microstructure, but also closely related to the phase composition of the microstructure.
Key words:  304 stainless steel    laser cladding    technological parameter    microstructure
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG456.7  
通讯作者:  赵宇光:男,1955年生,博士,教授,博士研究生导师,研究方向为金属基复合材料、电致强化 E-mail:zhaoyg@jlu.edu.cn 徐晓峰:男,1986年生,博士,讲师,研究方向为激光表面改性、高强耐热铝合金与合金强韧化 E-mail:xuxiaofeng@jlu.edu.cn   
作者简介:  杨丹:女,1983年生,硕士,讲师,研究方向为激光表面改性 E-mail:yangdan228@163.com
引用本文:    
杨 丹,宁玉恒,赵宇光,朱国斌,徐晓峰. 工艺参数对304不锈钢表面激光熔覆Ni基合金涂层的组织、耐磨性及耐腐蚀性的影响[J]. 《材料导报》期刊社, 2017, 31(24): 133-140.
YANG Dan, NING Yuheng, ZHAO Yuguang, ZHU Guobin, XU Xiaofeng. Influence of Processing Parameter on Microstructure, Wear-resistance and Corrosion-resistance of Laser Cladding Ni-based Alloy on the Surface of 304 Stainless Steel. Materials Reports, 2017, 31(24): 133-140.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.027  或          https://www.mater-rep.com/CN/Y2017/V31/I24/133
1 Liu Xu.Study on mechanical properties of nanocrystalline 304 stainless steel[D].Shenyang:Northeasten University,2013.
刘旭.纳米晶304不锈钢力学性能的研究[D].沈阳:东北大学,2013.
2 钱苗根.材料表面技术及其应用手册[M].北京:机械工业出版社,1998.
3 Wu Jian.The analysis of main factors affecting the quality of laser cladding layer and the optimizing measures[J].Mach Build Autom,2004,33(4):52(in Chinese).
吴健.影响激光熔覆层品质的主要因素分析[J].机械制造与自动化,2004,33(4):52.
4 Chen Hao,Li Huidong,Li Huiqi,et al.Plasma jet surface metallurgy and laser cladding[J].Surf Technol,2005,34(2):1(in Chinese).
陈颢,李惠东,李惠琪,等.等离子束表面冶金与激光熔覆技术[J].表面技术,2005,34(2):1.
5 Schwendner K I,Banerjee R,Collins P C,et al.Direct laser deposition of alloys from elemental powder blends[J].Scripta Mater,2001,45(10):1123.
6 Li Weixiang,Zhang Guangjun.Technology and development of laser cladding[J].J Shanghai University of Engineering Science,2008,22(3):254(in Chinese).
李伟翔,张光钧.激光熔覆技术与进展[J].上海工程技术大学学报,2008,22(3):254.
7 Mu Junwei.Research on microstructure and properties of Co-based alloy coating prepared on H13 steal[D].Wuhan:Wuhan University of Technology,2008(in Chinese).
牟军伟.H13钢表面制备钴基合金覆层的组织性能研究[D].武汉:武汉理工大学,2008.
8 Wang Yibo.Preparation of wear-resistant and corrosion-resistant coating with laser cladding[D].Harbin:Harbin Engineering University,2009(in Chinese).
王一博.激光熔覆制备耐磨耐蚀涂层[D].哈尔滨:哈尔滨工程大学,2009.
9 Li Yangliang,Bai Xiaobo,Wang Li,et al.Effect of laser cladding processing parameters on microstructure and properties of cladding layer[J].Mater Heat Treat,2009,38(12):101(in Chinese).
李养良,白小波,王利,等.激光熔覆工艺参数对熔覆层组织和性能的影响[J].热加工工艺,2009,38(12):101.
10López B,Gutiérrez I,Urcola J.Microstructural analysis of steel-nickel alloy clad interfaces[J].Mater Sci Technol,1996,12(6):45.
11Chen Chuanzhong,Wang Wenzhong,Cao Huaihua,et al.The brittleness of laser cladding Al2O3-NiCrAl layer and friction and wear properties[J].Chin J Lasers,1999,26(9):841(in Chinese).
陈传忠,王文中,曹怀华,等.激光熔覆Al2O3-NiCrAl层的脆性及摩擦磨损特性[J].中国激光,1999,26(9):841.
12Li Yangliang,Luo Hongmei,Wang Li,et al.Structure and properties of laser cladding with single and overlapping clad tracks on 45 steel[J].Mater Heat Treat,2009,38(4):68(in Chinese).
李养良,罗红梅,王利,等.45钢多道搭接激光熔覆层的组织与性能[J].热加工工艺,2009,38(4):68.
13Huang Fengxiao.An investigation on microstructure and properties of Ni-based alloy by laser cladding and laser cladding forming[D].Jilin:Jilin University,2011(in Chinese).
黄凤晓.激光熔覆和熔覆成形镍基合金的组织与性能研究[D].吉林:吉林大学,2011.
14Feng Xudong. Research on the microstructure and corrosion resistance of Ni-based alloy coatings by laser cladding on the soft steel[D].Jiaozuo: Henan Polytechnic University,2011(in Chinese).
冯旭东.低碳钢表面激光熔覆镍基涂层组织及耐蚀性研究[D].焦作:河南理工大学,2011.
15Liang Huiqin,Chao Mingju,Wang Dongsheng,et al. Research on the corrosion resistance of laser-clad Ta2O5/Ni60 coatings[J].Laser J,2007,28(6):78(in Chinese).
梁会琴,晁明举,王东升,等.Ta2O5/Ni60激光熔覆层的耐蚀性研究[J].激光杂志,2007,28(6):78.
16王凤平,康万利,敬和民.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社,2008:38.
17Lin Fan,Zhang Shaozong,Shi Ruihe.Electrochemical corrosion properties of high chromium, nickel stainless steel[J].Mate Prot,2000,33(3):50(in Chinese).
林凡,张少宗,施瑞鹤.高铬镍不锈钢的腐蚀电化学特性[J].材料保护,2000,33(3):50.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[3] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[4] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[5] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[6] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[7] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[8] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[9] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[10] 李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
[11] 傅邦杰, 彭文飞, 林龙飞, 李贺, 邵熠羽, 朱盛明. 差温轧制6063/7072铝合金复合板有限元模拟及翘曲影响因素[J]. 材料导报, 2024, 38(15): 23100223-8.
[12] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[13] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[14] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[15] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed