Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23100223-8    https://doi.org/10.11896/cldb.23100223
  先进有色金属材料加工及性能调控 |
差温轧制6063/7072铝合金复合板有限元模拟及翘曲影响因素
傅邦杰1,2, 彭文飞1,2,*, 林龙飞1,2, 李贺1,2, 邵熠羽1,2, 朱盛明1,2
1 宁波大学机械工程与力学学院,浙江 宁波 315211
2 浙江省零件轧制成形技术研究重点实验室,浙江 宁波 315211
Finite Element Simulation and Warping Influencing Factors of Differential Temperature Rolling 6063/7072 Aluminum Alloy Composite Plate
FU Bangjie1,2, PENG Wenfei1,2,*, LIN Longfei1,2, LI He1,2, SHAO Yiyu1,2, ZHU Shengming1,2
1 College of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
2 Zhejiang Provincial Key Lab of Part Rolling Technology, Ningbo 315211, Zhejiang, China
下载:  全 文 ( PDF ) ( 18308KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高能量密度动力电池的发展对液冷板提出了高安全、高性能制造要求,针对传统“冲压-钎焊”工艺焊合可靠性低、界面抗冲击性差等缺点,本工作提出 “差温轧制-吹胀”新工艺以制备结合良好、界面质量高的6063/7072铝合金液冷板。但异质金属的轧制易形成翘曲缺陷,导致后续吹胀工艺无法正常进行,因此亟需研究轧制液冷板的翘曲机理及其影响规律。本工作通过ANSYS/LS-DYNA有限元仿真和实验相结合的方式,研究了其差温轧制过程中的翘曲行为及其机理,分析了工艺参数对翘曲曲率的影响规律。结果表明:轧制方向的应力不协调导致6063铝合金板相对7072铝合金板需产生更大形变以达到应力平衡,轧制方向的应力差可以用来表征6063/7072铝合金液冷板的翘曲情况;提高轧制压下率、增大轧制温度差以及减小6063铝合金板厚度比例可有效降低液冷板的翘曲曲率,从而提高液冷板成形精度;实验与仿真的翘曲曲率相对误差小于5.58%,表明本研究的有限元模型准确可靠;通过差温轧制实验得到了6063/7072铝合金复合板,表明差温轧制复合板技术方案可行,为液冷板的高性能制造提供了有效途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
傅邦杰
彭文飞
林龙飞
李贺
邵熠羽
朱盛明
关键词:  6063/7072液冷板  液冷板成形  差温轧制  工艺参数  翘曲变形    
Abstract: The development of high-energy-density power batteries imposes stringent manufacturing requirements on liquid cooling plates, demanding both high safety and high performance. A novel differential temperature rolling-blowing process is proposed to successfully prepared the 6063/7072 aluminum alloy liquid-cooled plates with excellent bonding and high interface quality for addressing the drawbacks such as low weld reliability and poor interface impact resistance in the traditional stamp-brazing process. However, the heterogeneous metal composite plate is easy to form warping defects after rolling, which leads to the failure of the subsequent blowing process. Therefore, it is urgent to study the warping mechanism and its influence law of the rolled liquid-cooled plate. Through a combination of ANSYS/LS-DYNA finite element simulation and experiments, this paper investigates the warping behavior and mechanism during the differential temperature rolling process, analyzing the impact of process parameters on warpage curvature. The results show that the imbalance of stress in the rolling direction leads to a larger deformation of 6063 aluminum alloy plate than that of 7072 aluminum alloy plate to achieve stress equilibrium of dissimilar metals. The difference of stress in the rolling direction can be used to characterize the warping condition of 6063/7072 aluminum alloy liquid-cooled plates. The warping curvature of the liquid-cooled plate can be effectively reduced by increasing the rolling reduction rate, enlarging the temperature difference between the two types of mental during rolling, and reducing the thickness ratio of 6063 aluminum alloy plate in the composite plate. The forming accuracy of the liquid-cooled plate can be improved by these measures. The relative error between experimental and simulated warping curvature is less than 5.58%. It indicates the accuracy and reliability of the finite element model in this study. The 6063/7072 aluminum alloy composite plate was obtained by differential temperature rolling experiment, which showed that the technical scheme of differential temperature rolling composite plate was feasible. The differential temperature rolling provides an effective approach for the high-performance manufacturing of liquid-cooled plates.
Key words:  6063/7072 liquid cooling plate    liquid cooling plate forming    differential temperature rolling    process parameters    warpage defor-mation
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG146.1  
基金资助: 国家自然科学基金(52075272);宁波市科技创新2025重大专项(2021Z099);省属高校基本科研战略引导项目(SJLZ2021002)
通讯作者:  * 彭文飞,宁波大学机械工程与力学学院教授、博士研究生导师。2011 年毕业于北京科技大学机械工程系,获得工学博士学位。目前主要从事运载工具(汽车、高铁、航空航天)构件轻量化成形制造、金属基/碳纤维增强树脂基复合材料成形成性一体化调控等研究,主持国家级项目 2 项,在国内外专业期刊上发表论文 60 余篇,参与编著专著 2 部,获授权发明专利 10 余项。pengwenfei@nbu.edu.cn   
作者简介:  傅邦杰,硕士研究生,现就读于宁波大学机械工程与力学学院机械专业,目前主要从事异种金属轧制成形及复合材料结合工艺研究。
引用本文:    
傅邦杰, 彭文飞, 林龙飞, 李贺, 邵熠羽, 朱盛明. 差温轧制6063/7072铝合金复合板有限元模拟及翘曲影响因素[J]. 材料导报, 2024, 38(15): 23100223-8.
FU Bangjie, PENG Wenfei, LIN Longfei, LI He, SHAO Yiyu, ZHU Shengming. Finite Element Simulation and Warping Influencing Factors of Differential Temperature Rolling 6063/7072 Aluminum Alloy Composite Plate. Materials Reports, 2024, 38(15): 23100223-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100223  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23100223
1 Zhang Y W. Report to the development of China’s electric cars, China Electric Vehicle Hundred People Association, China, 2018, pp. 23 (in Chinese).
张永伟. 中国电动汽车发展报告, 中国电动汽车百人会, 2018, pp.23.
2 Chen L Y, Chen M M. China Southern Agricultural Machinery, 2021, 52(23), 102 (in Chinese).
陈丽雅, 陈敏敏. 南方农机, 2021, 52(23), 102.
3 Wan C D, Ren H Z, Lu C Y, et al. Machine Tool & Hydraulics, 2021, 49(4), 160 (in Chinese).
万长东, 任慧中, 鲁春艳, 等. 机床与液压, 2021, 49(4), 160.
4 Akbarzadeh M, Jaguemont J, Kalogi-Annis T, et al. Energy Conversion and Management, 2021, 231, 113862.
5 Fang K, Zhu Y, Song K J, et al. Electro-Mechanical Engineering, 2018, 34(1), 43 (in Chinese).
方坤, 朱勇, 宋奎晶, 等. 电子机械工程, 2018, 34(1), 43.
6 Chen Y S, Jin H L, Tao Y P. Welding Technology, 2019, 48(9), 112 (in Chinese).
陈永盛, 金恒林, 陶亚平. 焊接技术, 2019, 48(9), 112.
7 Chen X Y, Huang S L, Li L W, et al. Aviation Precision Manufacturing Technology, 2017, 53(4), 40 (in Chinese).
陈学永, 黄胜利, 李龙文, 等. 航空精密制造技术, 2017, 53(4), 40.
8 Huang G J, Zou B, Huang X, et al. Materials Reports, 2011, 25(10), 96 (in Chinese).
黄光杰, 邹彬, 黄鑫, 等. 材料导报, 2011, 25(10), 96.
9 Chen Z J, Liu Q, Wang G J, et al. Transactions of Materials and Heat Treatment, 2015, 36(6), 154 (in Chinese).
陈泽军, 刘庆, 王国军, 等. 材料热处理学报, 2015, 36(6), 154.
10 Chen Q Z. Study of strengthening and toughening on 1100/7075 Al alloy multilayer sheets. Master’s Thesis, Chongqing University, China, 2012 (in Chinese).
陈全忠. 1100/7075铝合金多层复合板材的强韧化研究. 硕士学位论文, 重庆大学, 2012.
11 Chen Z J, Wu X, Hu H B, et al. Journal of Materials Engineering and Performance, 2013, 23(3), 990.
12 MO T Q, Chen Z J, Chen H, et al. Materials Science and Engineering:A, 2019, 766, 138354.
13 Su L H, Lu C, Tieu A K, et al. Materials Science and Engineering:A, 2013, 559, 345.
14 Ye L Y, Huang X Y, Fan S T, et al. Journal of Central South University (Science and Technology), 2018, 49(9), 2160.
15 Yu W, Li G S, Cai Q W. Journal of Materials Processing Technology, 2015, 217, 317.
16 Bian S Y, Zhang X, Li S L, et al. Materials Science and Engineering:A, 2020, 791, 139778.
17 Xie H C, Chen N, Liang S J, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(8), 2231 (in Chinese).
谢红飙, 陈楠, 梁树杰, 等. 中国有色金属学报, 2022, 32(8), 2231.
18 Xiao H, Qi Z C, Yu C, et al. Journal of Materials Processing Tech, 2017, 249, 290.
19 He J J. Simulation study on thermoforming of 6063 aluminum alloy. Master’s Thesis, Yanshan University, China, 2019 (in Chinese).
何佳佳. 6063铝合金温热成形模拟研究. 硕士学位论文, 燕山大学, 2019.
20 Liu C C. Deformed aluminum alloy, Central South University Press, China, 2014, pp.59 (in Chinese).
刘赐才. 变形铝合金, 中南大学出版社, 2014, pp.59.
21 Wang Y L. Numerical simulation and experimental study on rolling process of Al/Mg alloy clad plate. Master’s Thesis, Yanshan University, China, 2021 (in Chinese).
王言录. 铝/镁复合轧制过程的数值模拟和实验研究. 硕士学位论文, 燕山大学, 2021.
22 Bai J. Numerical simulation and experimental study on rolling process of steel/Al clad plate. Master’s Thesis, Yanshan University, China, 2021 (in Chinese).
白婧. 钢/铝复合板轧制过程数值模拟及实验研究. 硕士学位论文, 燕山大学, 2021.
23 Peng W F, Zhu J, Sun B S, et al. Transactions of Beijing Institute of Technology, 2018, 38(9), 881 (in Chinese).
彭文飞, 朱健, 孙宝寿, 等. 北京理工大学学报, 2018, 38(9), 881.
[1] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[2] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[3] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[4] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[5] 陈远豪, 肖黎, 梁昌兴, 罗月婷, 龚恒翔. 基于SnO2∶Sb薄膜沉积工艺参数优化的支持向量回归分析[J]. 材料导报, 2023, 37(11): 21120097-6.
[6] 方乃文, 黄瑞生, 武鹏博, 尹立孟, 龙伟民, 徐锴, 曹浩, 邹吉鹏. 钛合金窄间隙激光填丝焊接工艺及接头组织性能分析[J]. 材料导报, 2023, 37(10): 22010253-1.
[7] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[8] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[9] 杨凯欣, 孙文磊, 肖奇, 邢学峰, 陈子豪. 基于田口灰色关联法对Fe06-15%TiC熔覆层激光工艺参数的优化[J]. 材料导报, 2022, 36(24): 21080157-9.
[10] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[11] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[12] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[13] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[14] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[15] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed