Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 21010246-9    https://doi.org/10.11896/cldb.21010246
  高分子与聚合物基复合材料 |
3D打印连续纤维增强热塑性复合材料成型质量的研究进展
秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚*
哈尔滨工业大学机电工程学院,哈尔滨 150001
3D Printing for Continuous Fiber-reinforced Thermoplastic Composites: a Review on Molding Quality
QIN Ruosen, SUN Shouzheng, HAN Zhenyu, ZHANG Peng, FU Hongya*
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 9782KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 连续纤维增强热塑性复合材料正在汽车工业、航空航天等领域得到日益广泛的应用。近年来连续纤维增强热塑性复合材料3D打印技术得到了研究人员越来越多的关注,成为新的研究热点。与自动纤维铺放、缠绕等传统复合材料的增材制造方式相比,3D打印技术逐层堆积的成型原理使其具有更大的制造灵活性。但是当材料或工艺参数发生改变时,3D打印连续纤维增强热塑性复合材料的成型质量将发生较大改变,这一直困扰着复合材料3D打印领域的研究人员。目前学者对3D打印连续纤维增强热塑性复合材料成型质量的研究多集中于通过实验探究最优的工艺参数,缺乏对各工艺参数影响机理较为全面的总结。本文从成型质量出发,对3D打印连续纤维增强热塑性复合材料的研究现状进行综述分析,重点分析了设备工艺原理、工艺参数(打印温度、速度、纤维取向、纤维体积分数、打印间距及打印层厚度)和其他因素(材料类型、堆叠方向及使用环境)对材料性能的影响,总结出各因素对成型质量的影响主要体现在纤维体积分数、孔隙率及界面特性等方面。最后展望了3D打印连续纤维增强热塑性复合材料成型质量研究领域的发展前景,为制备具有优异成型质量的3D打印连续纤维增强热塑性复合材料产品提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦若森
孙守政
韩振宇
张鹏
富宏亚
关键词:  3D打印  连续纤维增强热塑性复合材料  工艺参数  成型质量    
Abstract: Continuous fiber-reinforced thermoplastic composites (CFRTPCs) are widely used in the automotive industry, aerospace and other fields. In recent years, CFRTPCs materials 3D printing technology has attracted more and more attention from researchers and becomes a new research focus. Compared to traditional additive manufacturing methods for composites, such as automated fiber placement and winding, the layer-by-layer molding principle of 3D printing technology allows greater manufacturing flexibility. However, the molding quality of 3D-printed CFRTPCs could change significantly with changes in materials or process parameters, which has been troubling researchers in the field of composite 3D printing. At present, scholars' research on the molding quality of 3D-printed CFRTPCs mostly focuses on exploring the optimal process parameters through experiments. However, it lacks a comprehensive introduction to the influence mechanism of each process parameter. From the perspective of molding quality, this paper provides a thorough discussion on the effects of the mechanism of 3D printer, process parameters (temperature of liquefier, speed, fiber orientation, fiber volume fraction, hatch spacing and layer thickness) and other parameters (type of material, build orientation and environment) on the performance of 3D-printed composites. It is concluded that the influence of various parameters on molding quality is reflected in fiber volume fraction, porosity and interfacial properties. Finally, the development direction of the molding quality of 3D-printing composites has been prospected to provide references for preparing 3D-printed CFRTPCs products with excellent molding quality.
Key words:  3D printing    continuous fiber-reinforced thermoplastic composite    process parameter    molding quality
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51875134);国防装备预研领域基金(61409220122)
通讯作者:  *hongyafu@hit.edu.cn   
作者简介:  秦若森,2019年6月毕业于燕山大学,获得工学学士学位。现为哈尔滨工业大学机电工程学院博士研究生,在富宏亚教授的指导下进行研究。目前主要研究领域为连续纤维增强热塑性复合材料3D打印技术。
富宏亚,哈尔滨工业大学教授、博士研究生导师。2002年在哈尔滨工业大学机械工程专业获得博士学位。主持和主要参加完成各类科研项目60余项,获国家级教学成果二等奖一项,发表学术论文90余篇。获国家发明专利14项,获得软件著作权3项。目前所开展的主要研究方向有智能加工技术、网络制造、先进复合材料制品缠绕/铺放成型技术、3D打印技术。
引用本文:    
秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
QIN Ruosen, SUN Shouzheng, HAN Zhenyu, ZHANG Peng, FU Hongya. 3D Printing for Continuous Fiber-reinforced Thermoplastic Composites: a Review on Molding Quality. Materials Reports, 2022, 36(17): 21010246-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010246  或          http://www.mater-rep.com/CN/Y2022/V36/I17/21010246
1 Niu L, Huang Y, Zhang Y L. Development and Application of Materials, 2012, 27(3), 86 (in Chinese).
牛磊, 黄英, 张银铃. 材料开发与应用, 2012, 27(3),86.
2 Du S Y, Guan Z D. Acta Materiae Compositae Sinica, 2008(1), 1(in Chinese).
杜善义, 关志东. 复合材料学报, 2008(1), 1.
3 Fu H Y, Li Y H. Aeronautical Manufacturing Technology, 2012(18), 44 (in Chinese).
富宏亚, 李玥华. 航空制造技术, 2012(18), 44.
4 Han Z Y, Li Y H, Fu H Y, et al. Journal of Materials Engineering, 2012(2), 91 (in Chinese).
韩振宇, 李玥华, 富宏亚, 等. 材料工程, 2012(2), 91.
5 Zhao Y, Liu H S. Journal of Materials Engineering, 2020, 48(8), 49 (in Chinese).
肇研, 刘寒松.材料工程, 2020, 48(8), 49.
6 Matsuzaki R, Ueda M, Namiki M. et al. Scientific Reports, 2016, 6(1), 1.
7 Tian X Y, Liu T F, Yang C C, et al. Aeronautical Manufacturing Technology, 2016(15), 26 (in Chinese).
田小永, 刘腾飞, 杨春成, 等. 航空制造技术, 2016(15), 26.
8 Song Q H, Xiao J, Wen L W, et al. Acta Materiae Compositae Sinica, 2016, 33(6), 1214 (in Chinese).
宋清华, 肖军, 文立伟, 等. 复合材料学报, 2016, 33(6), 1214.
9 Chen X D, Li Y, Huang D J, et al. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(3), 467.
10 Agarwal K, Kuchipudi S K, Girard B, et al. Journal of Composite Mate-rials, 2018, 52(23), 3173.
11 Yang C C, Tian X Y, Liu T F, et al. Rapid Prototyping Journal, 2017, 23(1), 209.
12 Peng Y, Wu Y, Wang K, et al. Composite Structures, 2019, 207, 232.
13 Wickramasinghe S, Do T, Tran P. Polymers, 2020, 12(7), 1529.
14 Firas Akasheh, Heshmat Aglan. Journal of Elastomers & Plastics, 2019, 51(7-8), 698.
15 Chacon J M, Caminero M A, Nunez P J. et al. Composites Science and Technology, 2019, 181, 107688.
16 Zhang K, Zhang W X, Ding X L. Procedia CIRP, 2019, 85, 114.
17 Nakagawa Y, Mori K, Maeno T. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8), 2811.
18 Heidari-Rarani M, Rafiee-Afarani M, Zahedi A M. Composites Part B: Engineering, 2019, 175, 107147.
19 Dutra T A, Ferreira R T L, Resende H B, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(3), 1.
20 Naranjo-Lozada J, Ahuett-Garza H, Orta-Castanon P, et al. Additive Manufacturing, 2019, 26, 227.
21 Tian X Y, Liu T F, Yang C C, et al. Composites Part A: Applied Science and Manufacturing, 2016, 88,198.
22 Liu T F, Tian X Y, Zhu W J, et al. Journal of Mechanical Engineering, 2019, 55(7), 128 (in Chinese).
刘腾飞, 田小永, 朱伟军, 等. 机械工程学报, 2019, 55(7), 128.
23 Hou Z H, Tian X Y, Zhang J K, et al. Composite Structures, 2020, 237, 111945.
24 Bi X J, Tian X Y, Zhang S, et al. Engineering Plastics Application, 2019, 47(2),138 (in Chinese).
毕向军, 田小永, 张帅, 等. 工程塑料应用, 2019, 47(2), 138.
25 Yin L X, Tian X Y, Shang Z T, et al. Applied Physics A, 2019, 125(4), 1.
26 Luo M, Tian X Y, Shang J F, et al. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105812.
27 Luo M, Tian X Y, Shang J F, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 130.
28 Hu Q X, Duan Y C, Zhang H G, et al. Journal of Materials Science, 2018, 53(3), 1887.
29 Dickson A N, Abourayana H M, Dowling D P. Polymers, 2020, 12(10), 2188.
30 Blok L G, Longana M L, Yu H, et al. Additive Manufacturing, 2018, 22, 176.
31 同济大学. 中国专利, CN110328843A, 2019.
32 南京航空航天大学. 中国专利, CN106313496A, 2017.
33 陕西斐帛科技发展有限公司. 中国专利, CN107839225A, 2018.
34 北京机科国创轻量化科学研究院有限公司. 中国专利, CN110901051A, 2020.
35 Shan Z D, Fan C Z, Sun Q L, et al. China Mechanical Engineering, 2020, 31(2), 221 (in Chinese).
单忠德, 范聪泽, 孙启利, 等.中国机械工程, 2020, 31(2), 221.
36 Sun Q, Rizvi G M, Bellehumeur C T, et al. Rapid Prototyping Journal, 2008, 14(2), 72.
37 Todoroki A, Oasada T, Mizutani Y, et al. Advanced Composite Materials, 2020, 29(2), 147.
38 Cui Y H, Yu L G, Jia M Y. Fiber Composites, 2020, 37(4), 95 (in Chinese).
崔永辉, 虞立果, 贾明印. 纤维复合材料, 2020, 37(4), 95.
39 Zeng C J, Liu L W, Bian W F, et al. Composites Part B: Engineering, 2020, 194, 108034.
40 Dou H, Cheng Y Y, Ye W G, et al. Materials, 2020, 13(17), 3850.
41 Dickson A N, Barry J N, Mcdonnell K A, et al. Additive Manufacturing, 2017, 16, 146.
42 Pyl L, Kalteremidou K, Van Hemelrijck D. Polymer Testing, 2018, 71, 318.
43 Kabir S M F, Mathur K, Seyam A M. The Journal of the Textile Institute, 2021, 112(5), 752.
44 Oztan C, Karkkainen R, Fittipaldi M, et al. Journal of Composite Mate-rials, 2019, 53(2), 271.
45 Pertuz A D, Diaz-Cardona S, Gonzalez-Estrada O A. International Journal of Fatigue, 2020, 130, 105275.
46 Imeri A, Fidan I, Allen M, et al. The International Journal of Advanced Manufacturing Technology, 2018, 98(9-12), 2717.
47 Melenka G W, Cheung B K O, Schofield J S, et al. Composite Structures, 2016, 153, 866.
48 Der Klift F V, Koga Y, Todoroki A, et al. Open Journal of Composite Materials, 2016, 6(1), 18.
49 Matsuzaki R, Nakamura T, Sugiyama K, et al. Additive Manufacturing, 2018, 24, 93.
50 Hou Z Z, Tian X Y, Zhang J K, et al. Composite Structures, 2018, 184, 1005.
51 Goh G D, Dikshit V, Nagalingam A P, et al. Materials & Design, 2018, 137, 79.
52 Chabaud G, Castro M, Denoual C, et al. Additive Manufacturing, 2019, 26, 94.
53 van de Werken N, Hurley J, Khanbolouki P, et al. Composites Part B: Engineering, 2019, 160, 684.
54 Caminero M A, Chacon J M, Garcia-Moreno I, et al. Composites Part B: Engineering, 2018, 148, 93.
55 Zhang X N, Shan Z D, Fan C Z, et al. Engineering Plastics Application, 2019, 47(8), 91 (in Chinese).
张肖男, 单忠德, 范聪泽, 等. 工程塑料应用, 2019, 47(8), 91.
56 Justo J, Távara L, García-Guzmán L, et al. Composite Structures, 2017, 185, 537.
57 Abdullah A M, Mohamad D, Rahim T N A T, et al. Journal of Mechanical Science and Technology, 2019, 33(5), 2339.
58 Qian Z, Ma Z Y, Shi G T, et al. Engineering Plastics Application, 2019, 47(10), 59 (in Chinese).
钱正, 马志勇, 史耕田, 等.工程塑料应用, 2019, 47(10), 59.
59 Hu J R. Plastics Science and Technology, 2019, 47(11), 40 (in Chinese).
胡家荣. 塑料科技, 2019, 47(11), 40.
60 Dong K, Liu L Q, Huang X Y, et al. Composite Structures, 2020, 250, 112610.
61 He Q H, Wang H J, Fu K K, et al. Composites Science and Technology, 2020, 191, 108077.
62 Wang F J, Wang G S, Ning F D, et al. Additive Manufacturing, 2021, 37, 101661.
63 Ning F D, Cong W L, Hu Y B, et al. Journal of Composite Materials, 2016, 51(4), 451.
64 Kabir S M F, Mathur K, Seyam A M. Composite Structures, 2020, 232, 111476.
65 Chang B N, Li X M, Parandoush P, et al. Polymer Testing, 2020, 88, 106563.
66 Stepashkin A A, Chukov D I, Senatov F S, et al. Composites Science and Technology, 2018, 164, 319.
67 Luan J S. Preparation and properties of poly(ether ether ketone) fibers. Ph.D. Thesis, Jilin University, China, 2013 (in Chinese).
栾加双. 聚醚醚酮纤维的制备及性能研究. 博士学位论文, 吉林大学, 2013.
68 Caminero M A, Chacón J M, Reverte J M, et al. Polymer Testing, 2018, 68, 415.
69 Qiao J, Li Y R, Li L Q. Additive Manufacturing, 2019, 30, 100926.
70 Shang J F, Tian X Y, Luo M, et al. Composites Science and Technology, 2020, 192, 108096.
71 Mohammadizadeh M, Imeri A, Fidan I, et al. Composites Part B: Engineering, 2019, 175, 107112.
72 Mohammadizadeh M, Fidan I, Allen M, et al. The International Journal of Advanced Manufacturing Technology, 2018, 99(5-8), 1225.
73 Zhan Y K, Zhao Q, Li L P, et al. Engineering Plastics Application, 2019, 47(10), 135 (in Chinese).
战奕凯, 赵潜, 李莉萍, 等. 工程塑料应用, 2019, 47(10), 135.
74 Si S. The study on surface modification of aramid fiber and its properties. Ph.D. Thesis, Wuhan University of Technology, China, 2015 (in Chinese).
司帅. 芳纶纤维的表面改性及其性能研究. 博士学位论文, 武汉理工大学,2015.
75 Chacon J M, Caminero M A, Garcia-Plaza E, et al. Materials & Design, 2017, 124, 143.
76 Araya-Calvo M, López-Gómez I, Chamberlain-Simon N, et al. Additive Manufacturing, 2018, 22, 157.
77 Lee J, Huang A. Rapid Prototyping Journal, 2013, 19(4), 291.
78 Wang S M. Effect of temperature and humidity environment on mechanical properties of carbon fiber composites. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011 (in Chinese).
王世明. 温度与湿度环境对碳纤维复合材料力学行为的影响研究. 硕士学位论文, 南京航空航天大学, 2011.
79 Kikuchi B C, Bussamra F L D S, Donadon M V, et al. Polymer Compo-sites, 2020, 41(12), 5227.
[1] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[2] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[3] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[4] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[5] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[6] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[7] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[8] 王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵. 聚合物基材料4D打印研究进展[J]. 材料导报, 2022, 36(14): 20100265-15.
[9] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[10] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[11] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[12] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[13] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[14] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[15] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed