Abstract: Continuous fiber-reinforced thermoplastic composites (CFRTPCs) are widely used in the automotive industry, aerospace and other fields. In recent years, CFRTPCs materials 3D printing technology has attracted more and more attention from researchers and becomes a new research focus. Compared to traditional additive manufacturing methods for composites, such as automated fiber placement and winding, the layer-by-layer molding principle of 3D printing technology allows greater manufacturing flexibility. However, the molding quality of 3D-printed CFRTPCs could change significantly with changes in materials or process parameters, which has been troubling researchers in the field of composite 3D printing. At present, scholars' research on the molding quality of 3D-printed CFRTPCs mostly focuses on exploring the optimal process parameters through experiments. However, it lacks a comprehensive introduction to the influence mechanism of each process parameter. From the perspective of molding quality, this paper provides a thorough discussion on the effects of the mechanism of 3D printer, process parameters (temperature of liquefier, speed, fiber orientation, fiber volume fraction, hatch spacing and layer thickness) and other parameters (type of material, build orientation and environment) on the performance of 3D-printed composites. It is concluded that the influence of various parameters on molding quality is reflected in fiber volume fraction, porosity and interfacial properties. Finally, the development direction of the molding quality of 3D-printing composites has been prospected to provide references for preparing 3D-printed CFRTPCs products with excellent molding quality.
1 Niu L, Huang Y, Zhang Y L. Development and Application of Materials, 2012, 27(3), 86 (in Chinese). 牛磊, 黄英, 张银铃. 材料开发与应用, 2012, 27(3),86. 2 Du S Y, Guan Z D. Acta Materiae Compositae Sinica, 2008(1), 1(in Chinese). 杜善义, 关志东. 复合材料学报, 2008(1), 1. 3 Fu H Y, Li Y H. Aeronautical Manufacturing Technology, 2012(18), 44 (in Chinese). 富宏亚, 李玥华. 航空制造技术, 2012(18), 44. 4 Han Z Y, Li Y H, Fu H Y, et al. Journal of Materials Engineering, 2012(2), 91 (in Chinese). 韩振宇, 李玥华, 富宏亚, 等. 材料工程, 2012(2), 91. 5 Zhao Y, Liu H S. Journal of Materials Engineering, 2020, 48(8), 49 (in Chinese). 肇研, 刘寒松.材料工程, 2020, 48(8), 49. 6 Matsuzaki R, Ueda M, Namiki M. et al. Scientific Reports, 2016, 6(1), 1. 7 Tian X Y, Liu T F, Yang C C, et al. Aeronautical Manufacturing Technology, 2016(15), 26 (in Chinese). 田小永, 刘腾飞, 杨春成, 等. 航空制造技术, 2016(15), 26. 8 Song Q H, Xiao J, Wen L W, et al. Acta Materiae Compositae Sinica, 2016, 33(6), 1214 (in Chinese). 宋清华, 肖军, 文立伟, 等. 复合材料学报, 2016, 33(6), 1214. 9 Chen X D, Li Y, Huang D J, et al. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(3), 467. 10 Agarwal K, Kuchipudi S K, Girard B, et al. Journal of Composite Mate-rials, 2018, 52(23), 3173. 11 Yang C C, Tian X Y, Liu T F, et al. Rapid Prototyping Journal, 2017, 23(1), 209. 12 Peng Y, Wu Y, Wang K, et al. Composite Structures, 2019, 207, 232. 13 Wickramasinghe S, Do T, Tran P. Polymers, 2020, 12(7), 1529. 14 Firas Akasheh, Heshmat Aglan. Journal of Elastomers & Plastics, 2019, 51(7-8), 698. 15 Chacon J M, Caminero M A, Nunez P J. et al. Composites Science and Technology, 2019, 181, 107688. 16 Zhang K, Zhang W X, Ding X L. Procedia CIRP, 2019, 85, 114. 17 Nakagawa Y, Mori K, Maeno T. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8), 2811. 18 Heidari-Rarani M, Rafiee-Afarani M, Zahedi A M. Composites Part B: Engineering, 2019, 175, 107147. 19 Dutra T A, Ferreira R T L, Resende H B, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(3), 1. 20 Naranjo-Lozada J, Ahuett-Garza H, Orta-Castanon P, et al. Additive Manufacturing, 2019, 26, 227. 21 Tian X Y, Liu T F, Yang C C, et al. Composites Part A: Applied Science and Manufacturing, 2016, 88,198. 22 Liu T F, Tian X Y, Zhu W J, et al. Journal of Mechanical Engineering, 2019, 55(7), 128 (in Chinese). 刘腾飞, 田小永, 朱伟军, 等. 机械工程学报, 2019, 55(7), 128. 23 Hou Z H, Tian X Y, Zhang J K, et al. Composite Structures, 2020, 237, 111945. 24 Bi X J, Tian X Y, Zhang S, et al. Engineering Plastics Application, 2019, 47(2),138 (in Chinese). 毕向军, 田小永, 张帅, 等. 工程塑料应用, 2019, 47(2), 138. 25 Yin L X, Tian X Y, Shang Z T, et al. Applied Physics A, 2019, 125(4), 1. 26 Luo M, Tian X Y, Shang J F, et al. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105812. 27 Luo M, Tian X Y, Shang J F, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 130. 28 Hu Q X, Duan Y C, Zhang H G, et al. Journal of Materials Science, 2018, 53(3), 1887. 29 Dickson A N, Abourayana H M, Dowling D P. Polymers, 2020, 12(10), 2188. 30 Blok L G, Longana M L, Yu H, et al. Additive Manufacturing, 2018, 22, 176. 31 同济大学. 中国专利, CN110328843A, 2019. 32 南京航空航天大学. 中国专利, CN106313496A, 2017. 33 陕西斐帛科技发展有限公司. 中国专利, CN107839225A, 2018. 34 北京机科国创轻量化科学研究院有限公司. 中国专利, CN110901051A, 2020. 35 Shan Z D, Fan C Z, Sun Q L, et al. China Mechanical Engineering, 2020, 31(2), 221 (in Chinese). 单忠德, 范聪泽, 孙启利, 等.中国机械工程, 2020, 31(2), 221. 36 Sun Q, Rizvi G M, Bellehumeur C T, et al. Rapid Prototyping Journal, 2008, 14(2), 72. 37 Todoroki A, Oasada T, Mizutani Y, et al. Advanced Composite Materials, 2020, 29(2), 147. 38 Cui Y H, Yu L G, Jia M Y. Fiber Composites, 2020, 37(4), 95 (in Chinese). 崔永辉, 虞立果, 贾明印. 纤维复合材料, 2020, 37(4), 95. 39 Zeng C J, Liu L W, Bian W F, et al. Composites Part B: Engineering, 2020, 194, 108034. 40 Dou H, Cheng Y Y, Ye W G, et al. Materials, 2020, 13(17), 3850. 41 Dickson A N, Barry J N, Mcdonnell K A, et al. Additive Manufacturing, 2017, 16, 146. 42 Pyl L, Kalteremidou K, Van Hemelrijck D. Polymer Testing, 2018, 71, 318. 43 Kabir S M F, Mathur K, Seyam A M. The Journal of the Textile Institute, 2021, 112(5), 752. 44 Oztan C, Karkkainen R, Fittipaldi M, et al. Journal of Composite Mate-rials, 2019, 53(2), 271. 45 Pertuz A D, Diaz-Cardona S, Gonzalez-Estrada O A. International Journal of Fatigue, 2020, 130, 105275. 46 Imeri A, Fidan I, Allen M, et al. The International Journal of Advanced Manufacturing Technology, 2018, 98(9-12), 2717. 47 Melenka G W, Cheung B K O, Schofield J S, et al. Composite Structures, 2016, 153, 866. 48 Der Klift F V, Koga Y, Todoroki A, et al. Open Journal of Composite Materials, 2016, 6(1), 18. 49 Matsuzaki R, Nakamura T, Sugiyama K, et al. Additive Manufacturing, 2018, 24, 93. 50 Hou Z Z, Tian X Y, Zhang J K, et al. Composite Structures, 2018, 184, 1005. 51 Goh G D, Dikshit V, Nagalingam A P, et al. Materials & Design, 2018, 137, 79. 52 Chabaud G, Castro M, Denoual C, et al. Additive Manufacturing, 2019, 26, 94. 53 van de Werken N, Hurley J, Khanbolouki P, et al. Composites Part B: Engineering, 2019, 160, 684. 54 Caminero M A, Chacon J M, Garcia-Moreno I, et al. Composites Part B: Engineering, 2018, 148, 93. 55 Zhang X N, Shan Z D, Fan C Z, et al. Engineering Plastics Application, 2019, 47(8), 91 (in Chinese). 张肖男, 单忠德, 范聪泽, 等. 工程塑料应用, 2019, 47(8), 91. 56 Justo J, Távara L, García-Guzmán L, et al. Composite Structures, 2017, 185, 537. 57 Abdullah A M, Mohamad D, Rahim T N A T, et al. Journal of Mechanical Science and Technology, 2019, 33(5), 2339. 58 Qian Z, Ma Z Y, Shi G T, et al. Engineering Plastics Application, 2019, 47(10), 59 (in Chinese). 钱正, 马志勇, 史耕田, 等.工程塑料应用, 2019, 47(10), 59. 59 Hu J R. Plastics Science and Technology, 2019, 47(11), 40 (in Chinese). 胡家荣. 塑料科技, 2019, 47(11), 40. 60 Dong K, Liu L Q, Huang X Y, et al. Composite Structures, 2020, 250, 112610. 61 He Q H, Wang H J, Fu K K, et al. Composites Science and Technology, 2020, 191, 108077. 62 Wang F J, Wang G S, Ning F D, et al. Additive Manufacturing, 2021, 37, 101661. 63 Ning F D, Cong W L, Hu Y B, et al. Journal of Composite Materials, 2016, 51(4), 451. 64 Kabir S M F, Mathur K, Seyam A M. Composite Structures, 2020, 232, 111476. 65 Chang B N, Li X M, Parandoush P, et al. Polymer Testing, 2020, 88, 106563. 66 Stepashkin A A, Chukov D I, Senatov F S, et al. Composites Science and Technology, 2018, 164, 319. 67 Luan J S. Preparation and properties of poly(ether ether ketone) fibers. Ph.D. Thesis, Jilin University, China, 2013 (in Chinese). 栾加双. 聚醚醚酮纤维的制备及性能研究. 博士学位论文, 吉林大学, 2013. 68 Caminero M A, Chacón J M, Reverte J M, et al. Polymer Testing, 2018, 68, 415. 69 Qiao J, Li Y R, Li L Q. Additive Manufacturing, 2019, 30, 100926. 70 Shang J F, Tian X Y, Luo M, et al. Composites Science and Technology, 2020, 192, 108096. 71 Mohammadizadeh M, Imeri A, Fidan I, et al. Composites Part B: Engineering, 2019, 175, 107112. 72 Mohammadizadeh M, Fidan I, Allen M, et al. The International Journal of Advanced Manufacturing Technology, 2018, 99(5-8), 1225. 73 Zhan Y K, Zhao Q, Li L P, et al. Engineering Plastics Application, 2019, 47(10), 135 (in Chinese). 战奕凯, 赵潜, 李莉萍, 等. 工程塑料应用, 2019, 47(10), 135. 74 Si S. The study on surface modification of aramid fiber and its properties. Ph.D. Thesis, Wuhan University of Technology, China, 2015 (in Chinese). 司帅. 芳纶纤维的表面改性及其性能研究. 博士学位论文, 武汉理工大学,2015. 75 Chacon J M, Caminero M A, Garcia-Plaza E, et al. Materials & Design, 2017, 124, 143. 76 Araya-Calvo M, López-Gómez I, Chamberlain-Simon N, et al. Additive Manufacturing, 2018, 22, 157. 77 Lee J, Huang A. Rapid Prototyping Journal, 2013, 19(4), 291. 78 Wang S M. Effect of temperature and humidity environment on mechanical properties of carbon fiber composites. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011 (in Chinese). 王世明. 温度与湿度环境对碳纤维复合材料力学行为的影响研究. 硕士学位论文, 南京航空航天大学, 2011. 79 Kikuchi B C, Bussamra F L D S, Donadon M V, et al. Polymer Compo-sites, 2020, 41(12), 5227.