Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20040-20044    https://doi.org/10.11896/cldb.20080168
  金属与金属基复合材料 |
3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能
耿继业1, 蓝嘉昕1, 刘通2, 诸葛祥群2, 罗志虹1, 李义兵1, 罗鲲1,2
1 桂林理工大学材料科学与工程学院,桂林 541004
2 常州大学材料科学与工程学院,常州 213264
Fabrication and Properties of Flexible Gallium-based Liquid Metal Wires Encapsulated in 3D Printed Polyurethane Microchannel
GENG Jiye1, LAN Jiaxin1, LIU Tong2, ZHUGE Xiangqun2, LUO Zhihong1, LI Yibing1, LUO Kun1,2
1 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
2 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
下载:  全 文 ( PDF ) ( 6658KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用3D打印制备了聚氨酯(TPU)微流道,并采用注射器将GaInSn液态金属注入后封装,得到液态金属柔性导线。采用扫描电子显微镜(SEM)和能谱分析仪(EDS)对液态金属的形貌及结构进行表征。利用万用表和电化学工作站分别测试了复杂流道中的液态金属及外力作用下不同尺寸柔性导线的导电性能,并通过对比商用柔性电路板(FPC),测试了柔性导线在反复弯曲及对折下的抗疲劳性。结果表明,该液态金属由67.2%Ga、20.1%In和12.7%Sn(均为质量分数)组成,将其与TPU柔性材料结合,可制备多层复杂的结构电路;在压力(0~190 N)和弯曲变形(0~360°)的外力作用下,外力对液态金属柔性导线的导通性能基本无影响,其中,微流道横截尺寸为0.5 mm×0.5 mm时,外力对其影响最小;对比商用FPC,液态金属柔性导线在循环弯曲24 h、对折压实200次的条件下仍未发生断裂,其电阻仅增加0.02 Ω,展现了液态金属在复杂柔性电路制造领域的巨大应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿继业
蓝嘉昕
刘通
诸葛祥群
罗志虹
李义兵
罗鲲
关键词:  3D打印  聚氨酯  微流道  液态金属  柔性导线    
Abstract: Flexible liquid metal wires were fabricated by the injection and encapsulation of GaInSn liquid metal TPU into flexible polyurethane microchannels fabricated by 3D printing. Morphology and composition of GaInSn liquid metal were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). A multimeter and an electrochemical workstation were used to test the conductive properties of flexible wires of different sizes under the action of the liquid metal in the complex flow channel and external forces, and compared with commercial FPCs to test the fatigue resistance of the flexible wires under repeated bending and double folding. The results show that the liquid metal is composed of 67.2% Ga, 20.1% In and 12.7% Sn by mass. It can be combined with TPU flexible material to prepare a multilayer complex structure circuit; under pressure (0—190 N) and bending deformation (0—360°), the external force has basically no effect on the conduction performance of the liquid metal flexible wire. Among them, when the cross-sectional dimension of the micro-channel is 0.5 mm×0.5 mm, the external force has the least influence on it; compared with commercial FPC, the metal flexible wire did not break under the condition of cyclic bending for 24 hours and double folding and compacting 200 times, and its resistance increased by only 0.02 Ω; it showed the huge application potential of liquid metal in the field of complex flexible circuit manufacturing.
Key words:  3D printing    polyurethane    microchannel    liquid metal    flexible wire
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG178  
基金资助: 广西创新驱动发展专项资金项目(桂科AA17204021-7);广西科技计划重点项目(桂科AB17292017)
通讯作者:  luokun@cczu.edu.cn   
作者简介:  耿继业,2018年毕业于湖北工程学院新技术学院,获得高分子材料与工程专业工学学士学位。现为桂林理工大学硕士研究生,在罗鲲教授的指导下进行研究。目前主要研究领域为冶金工程。
罗鲲,常州大学教授,博士研究生导师,曾于2008—2018年在桂林理工大学任教。分别于2000年和2004年获得中国科学院材料科学与工程专业硕士学位和博士学位。从事新能源储能材料研究,已在Adv. Mater., Chem. Commun., Chem.Mater., J. Mater. Chem. A.等期刊发表研究论文100余篇。
引用本文:    
耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
GENG Jiye, LAN Jiaxin, LIU Tong, ZHUGE Xiangqun, LUO Zhihong, LI Yibing, LUO Kun. Fabrication and Properties of Flexible Gallium-based Liquid Metal Wires Encapsulated in 3D Printed Polyurethane Microchannel. Materials Reports, 2021, 35(20): 20040-20044.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080168  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20040
1 Qin Q, Liu Y W, Wang Y G, et al. Electronic Components and Mate-rials,2017,36(4),1(in Chinese).
秦琴,刘宜伟,王永刚,等.电子元件与材料,2017,36(4),1.
2 Deng B, Cheng G J. Advanced Materials,2019,31(14),1807811.
3 Katsuyama Y, Nakayasu Y, Oizumi K, et al. Advanced Sustainable Systems,2019,3(11),11224.
4 Hung C J, Liu C H, Wang C H, et al. Renewable Energy,2015,78(4),364.
5 Yuan X. Construction of three-dimensional porous structure of graphene and its effect on properties of flexible piezoresistive materials. Master’s Thesis, South China University of Technology, China,2017(in Chinese).
袁雪.石墨烯三维多孔结构的构筑及其对柔性压阻材料性能的影响.硕士学位论文,华南理工大学,2017.
6 Yue R R, Wang H C, Liu X P, et al. Materials Reports A:Review Papers,2019,33(11),3580(in Chinese).
岳瑞瑞,王会才,刘霞平,等.材料导报:综述篇,2019,33(11),3580.
7 Pasha A, Khasim S. Journal of Materials Science: Materials in Electro-nics,2020,31(12),9185.
8 Yoonchul Sohn, Kunmo Chu. Elsevier,2020,23(11),265.
9 Tang X, Khodasevych I E, Rowe W S T. IEEE Transactions on Antennas and Propagation,2017(1),1.
10 Zhou Y L, Liu Y W, Guo Z Y, et al. Functional Materials,2018,49(3),3152(in Chinese).
周酉林,刘宜伟,郭智勇,等.功能材料,2018,49(3),3152.
11 Kyeongseob K, Dongju L, Seunghyun E, et al. Sensors,2016,11(5),231.
12 Liu T. Journal of Microelectromechanical Systems,2012,21(2),443.
13 Michael D, Ryan C, Ryan J, et al. WILEY-VCH Verlag,2008,18(7),431.
14 Jin S W, Park J, Hong S Y, et al. Scientific Reports,2015,5,11695.
15 Mohammed M G, Dickey M D. Sensors and Actuators A: Physical,2013,193,246.
16 Yang X H, Tan S C, Liu J. Journal of Engineering Thermal Physics,2019,40(4),196(in Chinese).
杨小虎,谭思聪,刘静.工程热物理学报,2019,40(4),196.
17 Zhou Y L. Wearable stress sensor based on room-temperature liquid metal. Master’s Thesis, Ningbo University, China,2018(in Chinese).
周酉林.基于室温液态金属的可穿戴应力传感器研究.硕士学位论文,宁波大学,2018.
18 Wang Q, Yu Y, Yang J, et al. Advanced Materials,2015,27(44),7109.
19 Yu Y, Liu F, Zhang R, et al. Advanced Materials Technologies,2017,5(7),1700173.
20 Boley J W, White E L, Kramer R K. Advanced Materials,2015,27(14),2355.
21 Lin Y, Cooper C, Wang M, et al. Small,2015,11(48),2033.
[1] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[2] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[3] 苏毅, 李婷, 李爱群. 极小粒子增强聚氨酯阻尼性能的影响因素分析[J]. 材料导报, 2021, 35(4): 4205-4209.
[4] 杨帆, 丁建伟, 刘豪, 邱长军, 李胜. 液态GaIn合金对铜的腐蚀机理与防腐蚀技术研究[J]. 材料导报, 2021, 35(20): 20076-20080.
[5] 李廷廷, 刘锦春. 硬段含量对聚酯型温敏聚氨酯弹性体性能的影响[J]. 材料导报, 2021, 35(2): 2161-2165.
[6] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[7] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[8] 陈阳, 刘志勇, 管焓宇, 钱百惠. 水性聚氨酯增韧环氧树脂研究及应用进展[J]. 材料导报, 2021, 35(13): 13205-13214.
[9] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[10] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[11] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[12] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[13] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[14] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[15] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed