Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20076-20080    https://doi.org/10.11896/cldb.20060249
  金属与金属基复合材料 |
液态GaIn合金对铜的腐蚀机理与防腐蚀技术研究
杨帆, 丁建伟, 刘豪, 邱长军, 李胜
南华大学机械工程学院,衡阳 421001
Study on Anti-corrosion Technology and Corrosion Mechanism of Liquid GaIn Alloy to Copper
YANG Fan, DING Jianwei, LIU Hao, QIU Changjun, LI Sheng
School of Mechanical Engineering, University of South China, Hengyang 421001, China
下载:  全 文 ( PDF ) ( 6177KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高Cu耐GaIn合金腐蚀的性能,采用多弧离子镀在纯Cu表面溅射Cr涂层和Al涂层。再利用原位反应和溶胶凝胶法制备出 Cr/Cr2O3/Al2O3复合涂层、Cr/CrN/SiO2复合涂层以及 Al/Al2O3/Al2O3复合涂层,将样品置于60 ℃和200 ℃的GaIn合金中进行腐蚀试验。GaIn合金会对Cu样表面造成严重的点状腐蚀,但在腐蚀过程中铜镓金属间化合物会附着在铜样表面,从而降低GaIn合金对铜块的腐蚀速率。GaIn合金会对Al/Al2O3/Al2O3涂层造成严重的腐蚀,使涂层大面积剥落。Cr/CrN/SiO2涂层在GaIn合金中较为稳定,腐蚀程度低,但最外层的SiO2出现开裂和剥落。Cr/Cr2O3/Al2O3涂层在GaIn合金中无明显腐蚀现象。随着腐蚀温度的升高,GaIn合金对样品的腐蚀速率也会有所提高。Cu在200 ℃时的腐蚀速率是在60 ℃时的269倍以上,黏附在Cu表面的腐蚀产物主要为CuGa2。Cr/Cr2O3/Al2O3涂层抗GaIn合金腐蚀性能最好,Cr/Cr2O3/Al2O3涂层在200 ℃的GaIn合金中腐蚀速率为0.049 5 μm/h,且对Cu的热导率影响在1%左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨帆
丁建伟
刘豪
邱长军
李胜
关键词:  多弧离子镀  GaIn合金  液态金属腐蚀    
Abstract: To improve the corrosion resistance of Cu to GaIn alloy, Cr coating and Al coating were sputtered on the surface of pure copper by multi-arc ion plating.Cr/Cr2O3/Al2O3 composite coating, Cr/CrN/SiO2 composite coating and Al/Al2O3 /Al2O3 composite coating were prepared by in-situ reaction and sol-gel method. Corrosion tests were carried out in GaIn alloy at 60 ℃ and 200 ℃.GaIn alloy can cause severe pitting corrosion on the surface of copper block, but during the corrosion process, copper-gallium intermetallic compound which is attached to the surface of copper block will reduce the corrosion rate of GaIn alloy to copper block.GaIn alloy can cause serious corrosion to Al/Al2O3/Al2O3 coating.Large area of coating was desquamated. Cr/CrN/SiO2 coating was relatively stable in GaIn alloy, but the outermost layer of SiO2 showed a large amount of chipping. Cr/Cr2O3/Al2O3 coating was not obviously corroded in GaIn alloy. With the increase of corrosion temperature, the corrosion rate of GaIn alloy to samples also increased.The corrosion rate of copper at 200 ℃ was significantly more than 269 times that at 60 ℃, and the corrosion products adhering to the surface of copper were mainly CuGa2. Cr/Cr2O3/Al2O3 coating has the best corrosion resistance to GaIn alloy.Corrosion rate of Cr/Cr2O3/Al2O3 coating in GaIn alloy at 200 ℃ was 0.049 5 μm/h.The effect of Cr/Cr2O3/Al2O3 coating on thermal conductivity is around 1%.
Key words:  multi-arc ion plating    GaIn alloy    liquid metal corrosion
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TB37  
通讯作者:  lisheng325@126.com   
作者简介:  杨帆,硕士研究生。于2018年9月至2021年7月在南华大学机械工程学院培养学习,主要从事金属材料表面改性领域的研究。
李胜,南华大学,讲师。2010年毕业于南华大学,获机械工程硕士学位,同年加入南华大学机械工程学院工作至今,主要从事机械故障诊断、激光增材制造研究。
引用本文:    
杨帆, 丁建伟, 刘豪, 邱长军, 李胜. 液态GaIn合金对铜的腐蚀机理与防腐蚀技术研究[J]. 材料导报, 2021, 35(20): 20076-20080.
YANG Fan, DING Jianwei, LIU Hao, QIU Changjun, LI Sheng. Study on Anti-corrosion Technology and Corrosion Mechanism of Liquid GaIn Alloy to Copper. Materials Reports, 2021, 35(20): 20076-20080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060249  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20076
1 Ma K Q,Liu J. Frontiers of Energy and Power Engineering in China,2007,1(4),384.
2 Barbier F, Blanc J. Journal of Materials Research,1999,14(3),737.
3 Deng Y G, Liu J. Applied Physics A: Materials Science & Processing,2009,a95(3),907.
4 Liu Z, Chen P H, Qiu C J. China Surface Engineering,2013,26(3),69(in Chinese).
刘赞,陈平虎,邱长军.中国表面工程,2013,26(3),69.
5 Cui Y T, Ding Y J, Xu S, et al. International Journal of Thermophysics,2018,39(10),113.
6 Cui Y T,Liang F,Yang Z Z,et al. ACS Applied Materials & Interfaces,2018,10(11),9203.
7 Ma J L, Dong H X, He Z Z. Materials Horizons,2018,5(4),675.
8 Benamati G, Buttol P, Imbeni V, et al. Bournal of Nuclear Materials,2000,279(2),308.
9 Zhu Q, Chen Z X, Li W W. Defence Ships,2011(4),16.
10 Tsisar V, Kondo M, Muroga T, et al. Corrosion Science,2011,53(1),441.
11 Chopra O K, Smith D L. Journal of Nuclear Materials,1986,141-143,584.
12 Qian J P, Chen J M, Chen J B, et al. Journal of Nuclear Materials,1991,179-181,603.
13 Veprek S. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,1999,17(5),2401.
14 Archard J F. Journal of Applied Physics,1953,24(8),981.
15 Patscheider J, Zehnder T, Diserens M. Surface & Coatings Techndogy,2001,146(9),201.
16 Lei S, Wang Y X, Li J L, et al. Transactions of Nonferrous Metuls Society of China,2015,25(4),1135.
17 Zhang S H, Wang L, Wang Q M, et al. Surface & Coatings Technology,2013,214(2),153.
18 Chen D C, Zheng J S. Materials Review,2002,16(11),28(in Chinese).
陈东初,郑家燊.材料导报,2002,16(11),28.
19 Markov M A, Kashtanov A D, Krasikov A V, et al. Key Engineering Materials,2019,822,752.
20 Gu J F, Li P, Zhong Q D. Materials Review,2016,30(9),75(in Chinese).
顾剑锋,李沛,钟庆东.材料导报,2016,30(9),75.
21 Helevirta P J. Thin Solid Films,1985,126(3-4),275.
22 Larsson M, Bromark M,Hedenqvist P,et al. Surface & Coatings Technology,1995,76-77(part-P1),202.
23 Herranen M, Wiklund U, Carlsson J O, et al. Surface & Coatings Technology,1998,99(1-2),191.
24 Chen Zeshao, Qian Jun, Ye Yihuo. Journal of China University of Science and Technology,1992(4),416(in Chinese).
陈则韶,钱军,叶一火.中国科学技术大学学报,1992(4),416.
[1] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[2] 郭凯, 于海龙, 唐恩凌, 王猛, 贺丽萍, 刘淑华. 钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(14): 61-66.
[3] 章震威, 王军丽, 张清龙, 史庆南. 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1): 116-125.
[4] 王瑶, 赵雪妮, 党新安, 王旭东, 张黎, 杨建军, 何富珍, 张伟刚, 刘庆瑶. 海洋环境下钢材表面镀铝工艺的研究进展[J]. 材料导报, 2018, 32(21): 3805-3813.
[5] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed