Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 61-66    https://doi.org/10.11896/j.issn.1005-023X.2017.014.013
  材料研究 |
钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*
郭凯1, 于海龙2, 唐恩凌1, 王猛1, 贺丽萍1, 刘淑华1
1 沈阳理工大学装备工程学院, 沈阳 110159;
2 中国人民解放军95905部队, 锦州 121018;
Electrochemical Performance of a Novel Ca-P-Si Bioactive Ceramic Coating Formed on Titanium Surface by Plasma Electrolytic Oxidation
GUO Kai1, YU Hailong2, TANG Enling1, WANG Meng1, HE Liping1, LIU Shuhua1
1 School of Equipment engineering, Shenyang Ligong University, Shenyang 110159;
2 PLA 95905, Jinzhou 121018;
下载:  全 文 ( PDF ) ( 2137KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子体电解氧化法在钛表面制备Ca-P-Si生物活性陶瓷氧化膜。将纯钛及等离子体电解氧化后纯钛两种样品分别浸在37 ℃的Hank模拟体液中,用电化学实验分析其电化学性能。动电位极化曲线和交流阻抗结果表明,经过等离子体电解氧化处理后纯钛的自腐蚀电位升高了0.7 V,经过28 d的浸泡,微弧氧化处理后钛的阻抗值仍接近未处理时的1.5倍。微孤氧化陶瓷膜提高钛基体耐腐蚀性能归因于外层的羟基磷灰石层及微弧氧化的致密内层形成隔离层将基体与溶液隔离,起到了抗腐蚀作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭凯
于海龙
唐恩凌
王猛
贺丽萍
刘淑华
关键词:  纯钛  等离子体电解氧化  生物活性  电化学性能    
Abstract: The Ca-P-Si bioactive ceramic coating was prepared by means of plasma electrolytic oxidation on the surface of pure titanium. The sample surface was almost completely covered by hydroxyapatite after being immersed in simulated body fluid in 28 days. The electrochemical performances of pure titanium and plasma electrolytic oxidized (i.e.bioactive ceramic coated) pure tita-nium, both of which were immersed into Hank’s simulated body fluid at 37 ℃, were analyzed by electrochemical experiment.The results of the potentiodynamic polarization curves and the alternating-current impedance showed that the Ca-P-Si coated sample achieved an Ecorr rise of 0.7 V compared to pure Ti, as well as an impedance conspicuously higher than pure Ti after 28 days immersion. The corrosion resistance of the Ti matrix is promoted after Ca-P-Si coating due to an isolating layer composed of hydroxyapatite outer layer and compact micro-arc oxidized inner layer, which protects the substrate from solution corrosion.
Key words:  pure titanium    plasma electrolytic oxidation    bioactive    electrochemical performance
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TB39  
  TB37  
基金资助: *国家自然科学基金(51001107)
作者简介:  郭凯:男,1980年生,博士,副教授,主要从事陶瓷与粉末冶金的研究及机械设计 E-mail:99648990@qq.com
引用本文:    
郭凯, 于海龙, 唐恩凌, 王猛, 贺丽萍, 刘淑华. 钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(14): 61-66.
GUO Kai, YU Hailong, TANG Enling, WANG Meng, HE Liping, LIU Shuhua. Electrochemical Performance of a Novel Ca-P-Si Bioactive Ceramic Coating Formed on Titanium Surface by Plasma Electrolytic Oxidation. Materials Reports, 2017, 31(14): 61-66.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.013  或          http://www.mater-rep.com/CN/Y2017/V31/I14/61
1 Jin H.Research status of biomedical titanium alloys and its surface modification[J].Chin J Rare Met,2003,27(6):794(in Chinese).
金红.医用钛合金及其表面改性技术的研究现状[J].稀有金属,2003,27(6):794.
2 李佐臣.生物工程用钛合金研究与进展[C]∥94’秋季中国材料研讨会论文集.北京:中国材料研究学会,1994:3352.
3 Bill R C.Selected fretting-wear-resistant coatings for BT9 alloy [J].Wear,1985,106:283.
4 Hulshoff J,von dijk K,et al.A histological and histomorphometrical evalaiton of screw-type calciumphosphate (Ca-P) coated implants;An in vivo experiment in maxillary cancellous bone of goats[J].Mater Sci Mater Med,1996,7:603.
5 Li Q.Metal materials for organism[J].Metall Funct Mater,2000,7(4):9(in Chinese).
李青.生物体用金属材料[J]. 金属功能材料,2000,7(4):9.
6 Zhang Y M,Guo T W,Li Z C.The research on titanium and titanium alloy in dental use[J].J Biomed Eng,2000,17(2):206(in Chinese).
张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J].生物医学工程杂志,2000,17(2):206.
7 Shkouhfar M,Dehghanian C,Montazeri M.Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance[J].Appl Surf Sci,2012,258(7):2416.
8 Wang X,Cao Y,Yang L,et al.Bioactivity study of the titanium plates treated with microarc oxidation and alkali[J].J Nanosci Nanotech-nol,2011,11(11):9650.
9 Pan J,Leygraf C,Thierry D,et al.Corrosion resistance for biomate-rial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering [J]. J Biomed Mater Res,1997,35(3):309.
10 Schwarz K,Milne D B.Growth-promoting effects of silicon in rats [J]. Nature,1972,239:333.
11 Kodubo T,Ito S,Shigematsu M,et al. Fatigure and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite[J]. J Mater Sci,1987,22(11):4067.
12 Kuiper A E T,et al.Plasma oxidation of thin aluminum layers for magnetic spin-tunnel junctions [J].J Appl Phys,2001,89(3):1965.
13 Yerokhin A L,et al.Characterization of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy[J].Surf Coat Technol,2000,130(1):195.
14 Nie X,et al.Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis[J].Surf Coat Technol,2000,125(1):407.
15 Krupa D,Baszkiewicz J,Kozubowski J A.Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of tita-nium[J].Bomaterials,2001,22:2139.
16 Wagner C D,Riggs W M,Davis L E,et al.Mulenger. Handbook of X-ray photoelectron spectroscopy[M]. Eden Prairie, MN: Perkin-Elmer Corp,1979
17 Aza P N De,Luklinska Z B,et al.Reactivity of a wollastonite-trical-cium phosphate Bioeutectic ceramic in human parotid saliva[M]∥Biomaterials Mulenger. Handbook of X-ray photoelectron spectroscopy. Eden Prairie:Physical Electronics,2000:1735.
18 Feng B, Chen J Y, et al.Carbonate apatite coating on titanium induced rapidly by precalcification[J].Biomaterials,2002,23:173.
19 Han Y,et al.Structure and in vitro bioactivity of titania-based films by micro-arc oxidation[J].Surf Coat Technol,2003,168(2-3):249.
20 段友容.骨诱导Ca、P系陶瓷材料中类骨磷灰石层的形成、表征和体外动态研究模型的初步建立[D].成都:四川大学,2002:15
21 Liu X Y,Ding C X,Chu P K.Mechanism of apatite formation on wollastonite coatings in simulated body fluids[J].Biomaterials,2004,25:1755.
22 Godley R,Sstarosvetsky D, Gotman I.Bonelike apatite formation on niobium metal treated in aqueous NaOH[J].J Mater Sci: Mater Med,2004,15:1073.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[3] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[4] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[5] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[6] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[7] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[8] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[9] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[10] 李光大, 张楠, 张开丽, 赵三团, 麻开旺, 许贺龙, 赵威, 谢蟪旭. 含钙铁氧体磁性生物活性玻璃陶瓷热种子的制备与表征[J]. 材料导报, 2018, 32(24): 4211-4216.
[11] 马志鸣, 肖仁贵, 廖霞, 柯翔. 片层纳米结构磷酸铁制备及对磷酸铁锂电性能的影响[J]. 材料导报, 2018, 32(19): 3325-3331.
[12] 邓安强, 罗永春, 王浩, 赵磊, 罗元魁. 退火处理对A2B7型La0.63(Pr0.1Nd0.1Y0.6Sm0.1Gd0.1)0.2Mg0.17Ni3.1Co0.3Al0.1[J]. 材料导报, 2018, 32(15): 2565-2570.
[13] 李之锋, 罗垂意, 王春香, 钟盛文, 张骞. 无钴镍基正极材料LiNi0.7Mn0.3O2 氟掺杂改性研究[J]. 《材料导报》期刊社, 2018, 32(14): 2329-2334.
[14] 祝园园, 刘静, 熊茫茫, 杨峰, 杨闯. 氮氩混合比对TA2真空氮化层结构与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 79-82.
[15] 单文瑞,张玉勤,何正员,蒋业华,. Ti35Nb7Zr-xHA生物复合材料的微观组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 60-64.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed