Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22090238-6    https://doi.org/10.11896/cldb.22090238
  金属与金属基复合材料 |
激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能
黄留飞1,2,3, 王小英2, 孙耀宁3, 陈亮1, 王龙1, 任聪聪2, 杨晓珊2, 王斗2, 李晋锋2,*
1 核电安全监控技术与装备国家重点实验室,广东 深圳 518172
2 中国工程物理研究院材料研究所,四川 绵阳 621908
3 新疆大学机械工程学院,乌鲁木齐 830017
Microstructure and Properties of AlxCoCrFeNi High-entropy Alloys via Laser Melting Deposition
HUANG Liufei1,2,3, WANG Xiaoying2, SUN Yaoning3, CHEN Liang1, WANG Long1, REN Congcong2, YANG Xiaoshan2, WANG Dou2, LI Jinfeng2,*
1 State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, Shenzhen 518172, Guangdong, China
2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621908, Sichuan, China
3 School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
下载:  全 文 ( PDF ) ( 33920KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过激光熔化沉积技术制备了AlxCoCrFeNi (x=0,0.3,0.5)系高熵合金,并研究了Al的添加对激光熔化沉积CoCrFeNi合金的物相结构、组织形貌及性能的影响规律。研究结果表明:Al0与Al0.3高熵合金的微观结构为单相FCC结构固溶体,而Al0.5高熵合金的微观结构为在FCC相基底的晶界/枝晶界处析出富集Al、 Ni原子的B2相。合金样品的拉伸力学性能表明:Al0.5CoCrFeNi高熵合金的屈服强度达到了原合金的2.66倍 (140~372 MPa),抗拉强度达到约 716 MPa,延伸率约为 40%;电化学极化曲线分析表明,AlxCoCrFeNi系高熵合金在1 mol/L的H2SO4溶液中均具有显著的稳定钝化区,Al添加引起的致钝电流和维钝电流随着Al含量的增加呈现先减小后增大的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄留飞
王小英
孙耀宁
陈亮
王龙
任聪聪
杨晓珊
王斗
李晋锋
关键词:  激光熔化沉积  高熵合金  组织结构  力学性能  电化学性能    
Abstract: In this work, laser melting deposition technology (LMD) has been exploited to manufactured AlxCoCrFeNi (x=0, 0.3, and 0.5, denoted as Alx hereafter), and the impacts of Al addition on phase structure, microstructure, and performance of LMD-CoCrFeNi alloys were investigated. The results indicate that the microstructure of Al0 and Al0.3 consists of a single-phase FCC solid solution, whereas the one in Al0.5 is composed of a B2 phase enriched Al and Ni atoms precipitated at the grain boundary/dendritic grain boundary for the FCC phase matrix. The tensile mechanical properties of the alloy samples showed that the yield strength of the Al0.5CoCrFeNi high entropy alloy reached 2.66 times of the original alloy (140—372 MPa), the tensile strength reached ~716 MPa, and the elongation was ~40%. The electrochemical polarization curve analysis shows that a prominently stable passivation region represents in the AlxCoCrFeNi HEA in 1 mol/L H2SO4 solution. Fascinatingly, the obtuse current and dimensional obtuse current exhibit decrease first and then increase for the tendency accompanied with the increase of Al content.
Key words:  laser melting deposition    high-entropy alloys    microstructure    mechanical property    electrochemical property
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TG135+.1  
基金资助: 核电安全监控技术与装备国家重点实验室开放课题(CSO-102-001);深圳市国际合作研究项目(GJHZ20200731095203011);国家自然科学基金(52001288);中国工程物理研究院院长基金(YZJJLX2019010)
通讯作者:  *李晋锋,中国工程物理研究院材料研究所副研究员、硕士研究生导师。2015年清华大学材料学院材料科学与工程专业博士毕业后到中国工程物理研究院材料所工作至今。目前主要从事新型高熵合金设计、合金材料增材制造工艺等方面的研究工作。发表论文50余篇,包括Scripta Materialia、Journal of Alloys and Compounds、Journal of Materials Science & Technology、 Materials Science and Engineering: A等。   
作者简介:  黄留飞,2021年7月获得工学硕士学位,现为新疆大学机械工程学院2021级博士研究生。目前在中国工程物理研究院材料研究所联合培养,主要从事高强韧高熵合金的激光增材制造及力学性能研究。
引用本文:    
黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
HUANG Liufei, WANG Xiaoying, SUN Yaoning, CHEN Liang, WANG Long, REN Congcong, YANG Xiaoshan, WANG Dou, LI Jinfeng. Microstructure and Properties of AlxCoCrFeNi High-entropy Alloys via Laser Melting Deposition. Materials Reports, 2024, 38(6): 22090238-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090238  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22090238
1 Cantor B, Chang I T H, Knight P, et al. Materials Science & Enginee-ring A, 2004, 375-377, 213.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
3 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105.
4 Rogal Ł, Czerwinski F, Jochym P T, et al. Materials & Design, 2016, 92, 8.
5 Tsai M H. Entropy, 2013, 15(12), 5338.
6 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
7 Gao M C, Yeh J W, Liaw P K, et al. High-entropy alloys: fundamentals and applications, Springer International Publishing, Switzerland, 2016.
8 Lyu Z P, Lei Z F, Huang H L, et al. Acta Metallurgica Sinica, 2018, 54(11), 1553(in Chinese).
吕昭平, 雷智锋, 黄海龙, 等. 金属学报, 2018, 54(11), 1553.
9 Li M, Gazquez J, Borisevich A, et al. Intermetallics, 2018, 95, 110.
10 Huang L F, Sun Y N, Amar A, et al. Vacuum, 2021, 183, 109875.
11 Chou H P, Chang Y S, Chen S K, et al. Materials Science & Engineering B, 2009, 163(3), 184.
12 Li X, Li Z T, Wu Z G, et al. Journal of Materials Science & Technology, 2021, 94, 264.
13 Li J F, Xiang S, Luan H W, et al. Journal of Materials Science & Technology, 2019, 35(11), 2430.
14 Amar A, Li J F, Xiang S, et al. Intermetallics, 2019, 109, 162.
15 Xiang S, Luan H W, Wu J, et al. Journal of Alloys and Compounds, 2018, 773, 387.
16 Xiang S, Li J F, Luan H W, et al. Materials Science and Engineering A, 2019, 743, 412.
17 Huang L F, Sun Y N, Ji Y Q, et al. Chinese Journal of Lasers, 2021, 48(6), 0602107(in Chinese).
黄留飞, 孙耀宁, 季亚奇, 等. 中国激光, 2021, 48(6), 0602107.
18 Yuan B L, Li C Q, Dong Y, et al. Materials Reports, 2021, 35(Z2), 417(in Chinese).
袁碧亮, 李传强, 董勇, 等. 材料导报, 2021, 35(Z2), 417.
19 Xia M, Sun B, Wang X, et al. Materials Reports, 2021, 35(13), 13119(in Chinese).
夏铭, 孙博, 王鑫, 等. 材料导报, 2021, 35(13), 13119.
20 Shi Y, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33.
21 Shi Y Z, Collins L, Feng R, et al. Corrosion Science, 2018, 133, 120.
22 Kao Y F, Lee T D, Chen S K, et al. Corrosion Science, 2010, 52, 1026.
23 Takeuchi A, Inoue A. Materials Transactions, 2005, 46, 2817.
24 He J Y, Huang H L, Xu X D, et al. Acta Materialia, 2016, 102, 187.
25 Vida A, Varga L K, Chinh N Q, et al. Materials Science & Engineering A, 2016, 669, 14.
26 Della Rovere C A, Alano J H, Silva R, et al. Corrosion Science, 2012, 57, 154.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[3] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[6] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[7] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[8] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[9] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[10] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[11] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[12] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[13] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[14] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[15] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed