Progress in Preparation and Electrochemical Application of Single-wall Carbon Nanohorns
SU Xiankai1,2,3,†, XIE Zhipeng1,2,3,†, ZHANG Da1,2,3,*, HOU Shengping1,2,3, YANG Bin1,2,3, LIANG Feng1,2,3,*
1 National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China 2 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China 3 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract: Single-wall carbon nanohorns (SWCNHs) are hollow conical carbon nanomaterials produced by curling a single layer of graphene. SWCNHs cannot exist alone in a normal state, but instead as spherical aggregates formed by thousands of SWCNHs. Due to their excellent electrical and thermal properties, low density, and high specific surface area, SWCNHs are regarded as promising carbon nanomaterials for electrochemical application. SWCNHs are usually prepared by laser ablation, arc discharge, and joule heating methods, and these process do not use metal catalysts, so as to avoid impurity contamination, which broadens the application of SWCNHs. Over the last two decades, SWCNHs have been widely used in supercapacitors, electrochemical sensors, and lithium-ion, solar, fuel, and metal-CO2 batteries. Numerous studies have shown that SWCNH-based electrochemical devices offer high efficiency, stability, and safety. Promoting the industrial production and large-scale application of SWCNHs in the electrochemical field is of great significance to the development of new energy and high-end manufacturing industries in China. This study summarizes the structure, characteristics, and preparation methods of SWCNHs, reviews the research progress of SWCNHs in the field of electrochemistry, and prospects future research directions and development trends of SWCNHs.
1 Liu X X, Ying Y B, Ping J F. Biosensors and Bioelectronics, 2020, 167, 112495. 2 Kagkoura A, Tagmatarchis N. Nanomaterials, 2020, 10(7), 1407. 3 Hasani A. Nanoscience & Nanotechnology-Asia, 2020, 10(1), 4. 4 Iijima S, Yudasaka M, Yamada R, et al. Chemical Physics Letters, 1999, 309(3-4), 165. 5 Karousis N, Suarez-Martinez I, Ewels C P, et al. Chemical Reviews, 2016, 116(8), 4850. 6 Lodermeyer F, Costa R D, Guldi D M. Ecs Journal of Solid State Science & Technology, 2017, 6(6), M3140. 7 Zhang Z C, Han S, Wang C, et al. Nanomaterials, 2015, 5(4), 1732. 8 Azami T, Kasuya D, Yuge R, et al. Journal of Physical Chemistry C, 2008, 112(5), 1330. 9 Maddala G, Ambapuram M, Tankasala V L, et al. ACS Applied Energy Materials, 2021, 4(10), 11225. 10 Chakthranont P, Nitrathorn S, Thongratkaew S, et al. ACS Applied Energy Materials, 2021, 4(11), 12436. 11 Jung J Y, Jang J H, Kim J G, et al. Small Methods, 2021, 5(8), 2100239. 12 Eivazzadeh-Keihan R, Noruzi E B, Chidar E, et al. Chemical Enginee-ring Journal, 2022, 442(1), 136183. 13 Suarez-Martinez I, Grobert N, Ewels C P. Carbon, 2012, 50(3), 741. 14 Suarez-Martinez I, Mittal J, Allouche H, et al. Carbon, 2013, 54, 149. 15 Imai H, Babu P K, Oldfield E, et al. Physical Review B, 2006, 73(12), 125405. 16 Annamalai K P, Gao J P, Liu L L, et al. Journal of Materials Chemistry A, 2015, 3(22), 11740. 17 Nan Y L, Li B, Zhang P, et al. Materials Letters, 2016, 180, 313. 18 Xu J X, Shingaya Y, Tomimoto H, et al. Small, 2011, 7(9), 1169. 19 Wang M, Ma F H, Wang R H, et al. Laser Technology, 2019, 43(2), 179(in Chinese). 王冕, 马服辉, 王日红, 等. 激光技术, 2019, 43(2), 179. 20 Bandow S, Rao A M, Sumanasekera G U, et al. Applied Physics A, 2000, 71(5), 561. 21 Bandow S, Kokai F, Takahashi K, et al. Chemical Physics Letters, 2000, 321(5-6), 514. 22 Murata K, Kaneko K, Steele W A, et al. Journal of Physical Chemistry B, 2001, 105(42), 10210. 23 Li J T, Östling M. Crystals, 2013, 3(1), 16. 24 Zhang L L, Zhao X S. Chemical Society Reviews, 2009, 38(9), 2520. 25 Silva S A M, Perez J, Torresi R M, et al. Electrochimica Acta, 1999, 44(20), 3565. 26 Berber S, Kwon Y K, Tomanek D. Physical Review B, 2000, 62(4), R2291. 27 Kolesnikov D V, Osipov V A. Journal of Experimental and Theoretical Physics Letters, 2004, 79(11), 532. 28 Bandow S, Kokai F, Takahashi K, et al. Applied Physics A, 2001, 73(3), 281. 29 Yudasaka M, Ichihashi T, Kasuya D, et al. Carbon, 2003, 41(6), 1273. 30 Murata K, Kaneko K, Kokai F, et al. Chemical Physics Letters, 2000, 331(1), 14. 31 Murata K, Hirahara K, Yudasaka M, et al. Journal of Physical Chemistry B, 2014, 106(49), 12668. 32 Zhu S Y, Xu G B. Nanoscale, 2010, 2(12), 2538. 33 Nikolaev P, Bronikowski M J, Bradley R K, et al. Chemical Physics Letters, 1999, 313(1-2), 91. 34 Sidorov A, Mudd D, Sumanasekera G, et al. Nanotechnology, 2009, 20(5), 055611. 35 Tao Y S, Noguchi D, Yang C M, et al. Langmuir, 2007, 23(18), 9155. 36 Liu F, Wang M J, Chen Y, et al. Journal of Solid State Chemistry, 2019, 276, 100. 37 Cataldo F. Fullerene Science and Technology, 2001, 9(1), 55. 38 Wang Z M, Zeng X Y. Laser Journal, 2002, 23(2), 8(in Chinese). 王泽敏, 曾晓雁. 激光杂志, 2002, 23(2), 8. 39 Kasuya D, Yudasaka M, Takahashi K, et al. Journal of Physical Chemistry B, 2002, 106(19), 4947. 40 Zhong W, Yang J Y, Duan X K, et al. Materials Reports, 2007, 21(5), 14(in Chinese). 钟炜, 杨君友, 段兴凯, 等. 材料导报, 2007, 21(5), 14. 41 Yamaguchi T, Bandow S, Iijima S. Chemical Physics Letters, 2004, 389(1-3), 181. 42 Li N, Wang Z Y, Zhao K K, et al. Carbon, 2010, 48(5), 1580. 43 Zhang D, Ye K, Yao Y C, et al. Carbon, 2019, 142, 278. 44 Gattia D M, Antisari M V, Marazzi R. Nanotechnology, 2007, 18(25), 255604. 45 Wang H, Chhowalla M, Sano N, et al. Nanotechnology, 2004, 15(5), 546. 46 Vasu K, Pramoda K, Moses K, et al. Materials Research Express, 2013, 1(1), 015001. 47 Pagura C, Barison S, Mortalò C, et al. Nanoscience and Nanotechnology Letters, 2012, 4(2), 160. 48 Chinese Society for Composite Materials. Single-walled carbon nanohorns: T/CSCM 01—2022, China ,2022(in Chinese). 中国复合材料学会. 单壁碳纳米角: T/CSCM 01—2022, 2022. 49 Chang C C, Geleta T A, Imae T. Bulletin of the Chemical Society of Japan, 2021, 94(2), 454. 50 Kim J H, Ko Y, Lee S Y, et al. International Journal of Energy Research, 2022, 46(15), 23564. 51 Yang C M, Kim Y J, Endo M, et al. Journal of the American Chemical Society, 2007, 129(1), 20. 52 Yuge R, Manako T, Nakahara K, et al. Carbon, 2012, 50(15), 5569. 53 Jung H J, Kim Y J, Han J H, et al. Journal of Physical Chemistry C, 2013, 117(49), 25877. 54 Zhu Y W, Tao Z C, Ni K. Journal of University of Science and Technology of China, 2017, 47(2), 129. 55 Yang C M, Kim Y J, Miyawaki J, et al. Journal of Physical Chemistry C, 2015, 119(6), 2935. 56 Piñero R E, Amorós C D, Solano L A, et al. Carbon, 2002, 40(9), 1614. 57 Zieba W, Olejnik P, Koter S, et al. RSC Advances, 2020, 10(63), 38357. 58 Wang X, Lou M H, Yuan X T, et al. Carbon, 2017, 118, 511. 59 Wee J H, Kim Y A, Yang C M. Microporous and Mesoporous Materials, 2021, 310, 110595. 60 Tu X, Gao F, Ma X, et al. Journal of Hazardous Materials, 2020, 396(5), 122776. 61 Karadurmus L, Cetinkaya A, Kaya S I, et al. Trends in Environmental Analytical Chemistry, 2022, 34, e00158. 62 Girousi S, Stanic Z. Current Analytical Chemistry, 2011, 7(1), 80. 63 Zhu S Y, Fan L S, Liu X Q, et al. Electrochemistry Communications, 2008, 10(5), 695. 64 Montini T, Melchionna M, Monai M, et al. Chemical Reviews, 2016, 116(10), 5987. 65 Sun C W, Li H, Chen L Q. Energy & Environmental Science, 2012, 5(9), 8475. 66 Bracamonte M V, Melchionna M, Giuliani A, et al. Sensors and Actuators B: Chemical, 2017, 239, 923. 67 Liu X Q, Shi L H, Niu W X, et al. Biosensors and Bioelectronics, 2008, 23(12), 1887. 68 Chen J C, He P, Bai H M, et al. Journal of Electroanalytical Chemistry, 2017, 784, 41. 69 Zhu G B, Qian J J, Sun H, et al. Journal of the Electrochemical Society, 2017, 164(7), H545. 70 Zhu G B, Sun H, Zou B, et al. Biosensors and Bioelectronics, 2018, 106, 136. 71 Wang H W, Pan L L, Liu Y Q, et al. Journal of Electroanalytical Che-mistry, 2020, 862, 113955. 72 Shi M, Xue S, Xu J, et al. Analytical and Bioanalytical Chemistry, 2022, 414(14), 4119. 73 Liu X Q, Li H J, Wang F A, et al. Biosensors and Bioelectronics, 2010, 25(10), 2194. 74 Liu F, Xiang G M, Chen X M, et al. RSC Advances, 2014, 4(27), 13934. 75 Ding C F, Li H, Hu K C, et al. Talanta, 2010, 80(3), 1385. 76 Peng K F, Zhao H W, Wu X F, et al. Sensors and Actuators B: Chemical, 2012, 169, 88. 77 Jin X F, Jin X Y, Liu X P, et al. Analytica Chimica Acta, 2009, 645(1-2), 92. 78 Yang F, Han J, Zhuo Y, et al. Biosensors and Bioelectronics, 2014, 55(20), 360. 79 Huang Y, Li Z, Jin S, et al. Carbon, 2020, 167(1), 431. 80 Guo Y L, Zhou Y, Song X L, et al. Journal of Alloys and Compounds, 2021, 885, 160889. 81 Zhao Y, Li J X, Ding Y H, et al. Chemical Communications, 2011, 47(26), 7416. 82 Zhao Y, Li J X, Ding Y H, et al. RSC Advances, 2011, 1(5), 852. 83 Xu W, Wang Z Y, Guo Z D, et al. Journal of Power Sources, 2013, 232, 193. 84 Sahu S R, Rikka V R, Haridoss P, et al. Advanced Energy Materials, 2020, 10(36), 2001627. 85 Costa R D, Lodermeyer F, Casillas R, et al. Energy & Environmental Science, 2014, 7(4), 1281. 86 Costa R D, Feihl S, Kahnt A, et al. Advanced Materials, 2013, 25(45), 6513. 87 Casillas R, Lodermeyer F, Costa R D, et al. Advanced Energy Materials, 2014, 4(6), 1301577. 88 Lodermeyer F, Costa R D, Casillas R, et al. Energy & Environmental Science, 2015, 8(1), 241. 89 Susmitha K, Mamatha K M, Naresh K M, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(4), 4050. 90 Shao-Horn Y, Sheng W, Chen S, et al. Topics in Catalysis, 2007, 46(3), 285. 91 Shao Y Y, Yin G P, Gao Y Z. Journal of Power Sources, 2007, 171(2), 558. 92 Shao Y Y, Yin G P, Gao Y Z, et al. Journal of the Electrochemical Society, 2006, 153(6), A1093. 93 Niu B, Xu W, Guo Z D, et al. Journal of Nanoscience and Nanotechnology, 2012, 12(9), 7376. 94 Brandao L, Boaventura M, Ribeirinha P. International Journal of Hydrogen Energy, 2012, 37(24), 19073. 95 Gong K P, Du F, Xia Z H, et al. Science, 2009, 323(5915), 760. 96 Kosaka M, Kuroshima S, Kobayashi K, et al. Journal of Physical Che-mistry C, 2009, 113(20), 8660. 97 Zhang L W, Zheng N, Gao A, et al. Journal of Power Sources, 2012, 220, 449. 98 Zhu C X, Liu D, Chen Z, et al. Journal of Colloid and Interface Science, 2018, 511, 77. 99 Guo X, Wang Q, He H, et al. Journal of Materials Research and Technology, 2022, 19, 722. 100 Tan X Y, Zhang J X, Wu X H, et al. RSC Advances, 2018, 8(59), 33688. 101 Melchionna M, Bracamonte M V, Giuliani A, et al. Energy & Environmental Science, 2018, 11(6), 1571. 102 Guo X J, Yang L, Shen B F, et al. Materials Chemistry and Physics, 2020, 250, 123167. 103 Shakun J D, Clark P U, He F, et al. Nature, 2012, 484(7392), 49. 104 Chang Z W, Xu J J, Zhang X B. Advanced Energy Materials, 2017, 7(23), 1700875. 105 Zhang P, Zhao Y, Zhang X B. Chemical Society Reviews, 2018, 47(8), 2921. 106 Ci L J, Song L, Jin C H, et al. Nature Materials, 2010, 9(5), 430. 107 Banhart F, Kotakoski J, Krasheninnikov A V. ACS Nano, 2011, 5(1), 26. 108 Qie L, Lin Y, Connell J W, et al. Angewandte Chemie International Edition, 2017, 56(24), 6970. 109 Xu C F, Zhang K W, Zhang D, et al. Nano Energy, 2020, 68, 104318.