Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22100192-13    https://doi.org/10.11896/cldb.22100192
  电化学能源材料与器件 |
单壁碳纳米角的制备及电化学应用进展
苏咸凯1,2,3,†, 解志鹏1,2,3,†, 张达1,2,3,*, 侯圣平1,2,3, 杨斌1,2,3, 梁风1,2,3,*
1 昆明理工大学真空冶金国家工程研究中心,昆明 650093
2 昆明理工大学云南省有色金属真空冶金重点实验室,昆明 650093
3 昆明理工大学冶金与能源工程学院,昆明 650093
Progress in Preparation and Electrochemical Application of Single-wall Carbon Nanohorns
SU Xiankai1,2,3,†, XIE Zhipeng1,2,3,†, ZHANG Da1,2,3,*, HOU Shengping1,2,3, YANG Bin1,2,3, LIANG Feng1,2,3,*
1 National Engineering Research Center for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
2 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
3 School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 26857KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单壁碳纳米角(Single-wall carbon nanohorns,SWCNHs)是由单层石墨烯卷曲而成的中空锥状碳纳米材料,通常状态下无法单独存在,一般为以数千根SWCNHs聚集成的球型聚集体,因优异的导电和导热性能、低的密度和大的比表面积而被视为一种极具电化学应用前景的碳纳米材料。SWCNHs通常采用激光烧蚀法、电弧放电法和焦耳热法制备,且三种方法的制备过程均未涉及金属催化剂,避免了杂质污染,从而拓宽了其应用领域。在过去20年里,SWCNHs被广泛应用于超级电容器、电化学传感器、锂离子电池、太阳能电池、燃料电池和金属-CO2电池中。众多研究表明,SWCNHs基电化学器件具有高效、稳定、安全的优势,推动SWCNHs的工业化量产和在电化学领域的规模化应用对国家新能源和高端制造业的发展具有重要意义。本文概述了SWCNHs的结构、特性和制备方法,回顾了SWCNHs在电化学领域的研究进展,并对SWCNHs未来的研究方向和发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏咸凯
解志鹏
张达
侯圣平
杨斌
梁风
关键词:  单壁碳纳米角  结构特性  电化学  纳米材料    
Abstract: Single-wall carbon nanohorns (SWCNHs) are hollow conical carbon nanomaterials produced by curling a single layer of graphene. SWCNHs cannot exist alone in a normal state, but instead as spherical aggregates formed by thousands of SWCNHs. Due to their excellent electrical and thermal properties, low density, and high specific surface area, SWCNHs are regarded as promising carbon nanomaterials for electrochemical application. SWCNHs are usually prepared by laser ablation, arc discharge, and joule heating methods, and these process do not use metal catalysts, so as to avoid impurity contamination, which broadens the application of SWCNHs. Over the last two decades, SWCNHs have been widely used in supercapacitors, electrochemical sensors, and lithium-ion, solar, fuel, and metal-CO2 batteries. Numerous studies have shown that SWCNH-based electrochemical devices offer high efficiency, stability, and safety. Promoting the industrial production and large-scale application of SWCNHs in the electrochemical field is of great significance to the development of new energy and high-end manufacturing industries in China. This study summarizes the structure, characteristics, and preparation methods of SWCNHs, reviews the research progress of SWCNHs in the field of electrochemistry, and prospects future research directions and development trends of SWCNHs.
Key words:  single-wall carbon nanohorns    structural characteristics    electrochemical    nanomaterials
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TB321  
基金资助: 国家自然科学基金(12175089;12205127);云南省重点研发计划项目(202103AF140006);云南省科技厅应用基础研究计划项目(202001AW070004);云南省重大科技计划项目(202202AG050003)
通讯作者:  *张达,昆明理工大学冶金与能源工程学院讲师,2021年6月博士毕业于昆明理工大学。目前主要从事等离子体制备与改性碳纳米材料的研究。
梁风,昆明理工大学冶金与能源工程学院教授、博士研究生导师,2014年3月博士毕业于东京工业大学,国家人社部资助高层次留学回国人才,第九批云南省“高端科技人才”入选者。目前主要从事等离子体制备与改性纳米材料及其在能源上应用等方面的研究。   
作者简介:  苏咸凯,昆明理工大学冶金与能源工程学院硕士研究生。目前主要研究领域为直流电弧等离子体制备碳纳米角和等离子体数值模拟。
解志鹏,现为昆明理工大学冶金与能源工程学院博士研究生。目前主要研究领域为碳纳米角的直流电弧等离子体制备生长机理及其应用。†共同第一作者
引用本文:    
苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
SU Xiankai, XIE Zhipeng, ZHANG Da, HOU Shengping, YANG Bin, LIANG Feng. Progress in Preparation and Electrochemical Application of Single-wall Carbon Nanohorns. Materials Reports, 2024, 38(6): 22100192-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100192  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22100192
1 Liu X X, Ying Y B, Ping J F. Biosensors and Bioelectronics, 2020, 167, 112495.
2 Kagkoura A, Tagmatarchis N. Nanomaterials, 2020, 10(7), 1407.
3 Hasani A. Nanoscience & Nanotechnology-Asia, 2020, 10(1), 4.
4 Iijima S, Yudasaka M, Yamada R, et al. Chemical Physics Letters, 1999, 309(3-4), 165.
5 Karousis N, Suarez-Martinez I, Ewels C P, et al. Chemical Reviews, 2016, 116(8), 4850.
6 Lodermeyer F, Costa R D, Guldi D M. Ecs Journal of Solid State Science & Technology, 2017, 6(6), M3140.
7 Zhang Z C, Han S, Wang C, et al. Nanomaterials, 2015, 5(4), 1732.
8 Azami T, Kasuya D, Yuge R, et al. Journal of Physical Chemistry C, 2008, 112(5), 1330.
9 Maddala G, Ambapuram M, Tankasala V L, et al. ACS Applied Energy Materials, 2021, 4(10), 11225.
10 Chakthranont P, Nitrathorn S, Thongratkaew S, et al. ACS Applied Energy Materials, 2021, 4(11), 12436.
11 Jung J Y, Jang J H, Kim J G, et al. Small Methods, 2021, 5(8), 2100239.
12 Eivazzadeh-Keihan R, Noruzi E B, Chidar E, et al. Chemical Enginee-ring Journal, 2022, 442(1), 136183.
13 Suarez-Martinez I, Grobert N, Ewels C P. Carbon, 2012, 50(3), 741.
14 Suarez-Martinez I, Mittal J, Allouche H, et al. Carbon, 2013, 54, 149.
15 Imai H, Babu P K, Oldfield E, et al. Physical Review B, 2006, 73(12), 125405.
16 Annamalai K P, Gao J P, Liu L L, et al. Journal of Materials Chemistry A, 2015, 3(22), 11740.
17 Nan Y L, Li B, Zhang P, et al. Materials Letters, 2016, 180, 313.
18 Xu J X, Shingaya Y, Tomimoto H, et al. Small, 2011, 7(9), 1169.
19 Wang M, Ma F H, Wang R H, et al. Laser Technology, 2019, 43(2), 179(in Chinese).
王冕, 马服辉, 王日红, 等. 激光技术, 2019, 43(2), 179.
20 Bandow S, Rao A M, Sumanasekera G U, et al. Applied Physics A, 2000, 71(5), 561.
21 Bandow S, Kokai F, Takahashi K, et al. Chemical Physics Letters, 2000, 321(5-6), 514.
22 Murata K, Kaneko K, Steele W A, et al. Journal of Physical Chemistry B, 2001, 105(42), 10210.
23 Li J T, Östling M. Crystals, 2013, 3(1), 16.
24 Zhang L L, Zhao X S. Chemical Society Reviews, 2009, 38(9), 2520.
25 Silva S A M, Perez J, Torresi R M, et al. Electrochimica Acta, 1999, 44(20), 3565.
26 Berber S, Kwon Y K, Tomanek D. Physical Review B, 2000, 62(4), R2291.
27 Kolesnikov D V, Osipov V A. Journal of Experimental and Theoretical Physics Letters, 2004, 79(11), 532.
28 Bandow S, Kokai F, Takahashi K, et al. Applied Physics A, 2001, 73(3), 281.
29 Yudasaka M, Ichihashi T, Kasuya D, et al. Carbon, 2003, 41(6), 1273.
30 Murata K, Kaneko K, Kokai F, et al. Chemical Physics Letters, 2000, 331(1), 14.
31 Murata K, Hirahara K, Yudasaka M, et al. Journal of Physical Chemistry B, 2014, 106(49), 12668.
32 Zhu S Y, Xu G B. Nanoscale, 2010, 2(12), 2538.
33 Nikolaev P, Bronikowski M J, Bradley R K, et al. Chemical Physics Letters, 1999, 313(1-2), 91.
34 Sidorov A, Mudd D, Sumanasekera G, et al. Nanotechnology, 2009, 20(5), 055611.
35 Tao Y S, Noguchi D, Yang C M, et al. Langmuir, 2007, 23(18), 9155.
36 Liu F, Wang M J, Chen Y, et al. Journal of Solid State Chemistry, 2019, 276, 100.
37 Cataldo F. Fullerene Science and Technology, 2001, 9(1), 55.
38 Wang Z M, Zeng X Y. Laser Journal, 2002, 23(2), 8(in Chinese).
王泽敏, 曾晓雁. 激光杂志, 2002, 23(2), 8.
39 Kasuya D, Yudasaka M, Takahashi K, et al. Journal of Physical Chemistry B, 2002, 106(19), 4947.
40 Zhong W, Yang J Y, Duan X K, et al. Materials Reports, 2007, 21(5), 14(in Chinese).
钟炜, 杨君友, 段兴凯, 等. 材料导报, 2007, 21(5), 14.
41 Yamaguchi T, Bandow S, Iijima S. Chemical Physics Letters, 2004, 389(1-3), 181.
42 Li N, Wang Z Y, Zhao K K, et al. Carbon, 2010, 48(5), 1580.
43 Zhang D, Ye K, Yao Y C, et al. Carbon, 2019, 142, 278.
44 Gattia D M, Antisari M V, Marazzi R. Nanotechnology, 2007, 18(25), 255604.
45 Wang H, Chhowalla M, Sano N, et al. Nanotechnology, 2004, 15(5), 546.
46 Vasu K, Pramoda K, Moses K, et al. Materials Research Express, 2013, 1(1), 015001.
47 Pagura C, Barison S, Mortalò C, et al. Nanoscience and Nanotechnology Letters, 2012, 4(2), 160.
48 Chinese Society for Composite Materials. Single-walled carbon nanohorns: T/CSCM 01—2022, China ,2022(in Chinese).
中国复合材料学会. 单壁碳纳米角: T/CSCM 01—2022, 2022.
49 Chang C C, Geleta T A, Imae T. Bulletin of the Chemical Society of Japan, 2021, 94(2), 454.
50 Kim J H, Ko Y, Lee S Y, et al. International Journal of Energy Research, 2022, 46(15), 23564.
51 Yang C M, Kim Y J, Endo M, et al. Journal of the American Chemical Society, 2007, 129(1), 20.
52 Yuge R, Manako T, Nakahara K, et al. Carbon, 2012, 50(15), 5569.
53 Jung H J, Kim Y J, Han J H, et al. Journal of Physical Chemistry C, 2013, 117(49), 25877.
54 Zhu Y W, Tao Z C, Ni K. Journal of University of Science and Technology of China, 2017, 47(2), 129.
55 Yang C M, Kim Y J, Miyawaki J, et al. Journal of Physical Chemistry C, 2015, 119(6), 2935.
56 Piñero R E, Amorós C D, Solano L A, et al. Carbon, 2002, 40(9), 1614.
57 Zieba W, Olejnik P, Koter S, et al. RSC Advances, 2020, 10(63), 38357.
58 Wang X, Lou M H, Yuan X T, et al. Carbon, 2017, 118, 511.
59 Wee J H, Kim Y A, Yang C M. Microporous and Mesoporous Materials, 2021, 310, 110595.
60 Tu X, Gao F, Ma X, et al. Journal of Hazardous Materials, 2020, 396(5), 122776.
61 Karadurmus L, Cetinkaya A, Kaya S I, et al. Trends in Environmental Analytical Chemistry, 2022, 34, e00158.
62 Girousi S, Stanic Z. Current Analytical Chemistry, 2011, 7(1), 80.
63 Zhu S Y, Fan L S, Liu X Q, et al. Electrochemistry Communications, 2008, 10(5), 695.
64 Montini T, Melchionna M, Monai M, et al. Chemical Reviews, 2016, 116(10), 5987.
65 Sun C W, Li H, Chen L Q. Energy & Environmental Science, 2012, 5(9), 8475.
66 Bracamonte M V, Melchionna M, Giuliani A, et al. Sensors and Actuators B: Chemical, 2017, 239, 923.
67 Liu X Q, Shi L H, Niu W X, et al. Biosensors and Bioelectronics, 2008, 23(12), 1887.
68 Chen J C, He P, Bai H M, et al. Journal of Electroanalytical Chemistry, 2017, 784, 41.
69 Zhu G B, Qian J J, Sun H, et al. Journal of the Electrochemical Society, 2017, 164(7), H545.
70 Zhu G B, Sun H, Zou B, et al. Biosensors and Bioelectronics, 2018, 106, 136.
71 Wang H W, Pan L L, Liu Y Q, et al. Journal of Electroanalytical Che-mistry, 2020, 862, 113955.
72 Shi M, Xue S, Xu J, et al. Analytical and Bioanalytical Chemistry, 2022, 414(14), 4119.
73 Liu X Q, Li H J, Wang F A, et al. Biosensors and Bioelectronics, 2010, 25(10), 2194.
74 Liu F, Xiang G M, Chen X M, et al. RSC Advances, 2014, 4(27), 13934.
75 Ding C F, Li H, Hu K C, et al. Talanta, 2010, 80(3), 1385.
76 Peng K F, Zhao H W, Wu X F, et al. Sensors and Actuators B: Chemical, 2012, 169, 88.
77 Jin X F, Jin X Y, Liu X P, et al. Analytica Chimica Acta, 2009, 645(1-2), 92.
78 Yang F, Han J, Zhuo Y, et al. Biosensors and Bioelectronics, 2014, 55(20), 360.
79 Huang Y, Li Z, Jin S, et al. Carbon, 2020, 167(1), 431.
80 Guo Y L, Zhou Y, Song X L, et al. Journal of Alloys and Compounds, 2021, 885, 160889.
81 Zhao Y, Li J X, Ding Y H, et al. Chemical Communications, 2011, 47(26), 7416.
82 Zhao Y, Li J X, Ding Y H, et al. RSC Advances, 2011, 1(5), 852.
83 Xu W, Wang Z Y, Guo Z D, et al. Journal of Power Sources, 2013, 232, 193.
84 Sahu S R, Rikka V R, Haridoss P, et al. Advanced Energy Materials, 2020, 10(36), 2001627.
85 Costa R D, Lodermeyer F, Casillas R, et al. Energy & Environmental Science, 2014, 7(4), 1281.
86 Costa R D, Feihl S, Kahnt A, et al. Advanced Materials, 2013, 25(45), 6513.
87 Casillas R, Lodermeyer F, Costa R D, et al. Advanced Energy Materials, 2014, 4(6), 1301577.
88 Lodermeyer F, Costa R D, Casillas R, et al. Energy & Environmental Science, 2015, 8(1), 241.
89 Susmitha K, Mamatha K M, Naresh K M, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(4), 4050.
90 Shao-Horn Y, Sheng W, Chen S, et al. Topics in Catalysis, 2007, 46(3), 285.
91 Shao Y Y, Yin G P, Gao Y Z. Journal of Power Sources, 2007, 171(2), 558.
92 Shao Y Y, Yin G P, Gao Y Z, et al. Journal of the Electrochemical Society, 2006, 153(6), A1093.
93 Niu B, Xu W, Guo Z D, et al. Journal of Nanoscience and Nanotechnology, 2012, 12(9), 7376.
94 Brandao L, Boaventura M, Ribeirinha P. International Journal of Hydrogen Energy, 2012, 37(24), 19073.
95 Gong K P, Du F, Xia Z H, et al. Science, 2009, 323(5915), 760.
96 Kosaka M, Kuroshima S, Kobayashi K, et al. Journal of Physical Che-mistry C, 2009, 113(20), 8660.
97 Zhang L W, Zheng N, Gao A, et al. Journal of Power Sources, 2012, 220, 449.
98 Zhu C X, Liu D, Chen Z, et al. Journal of Colloid and Interface Science, 2018, 511, 77.
99 Guo X, Wang Q, He H, et al. Journal of Materials Research and Technology, 2022, 19, 722.
100 Tan X Y, Zhang J X, Wu X H, et al. RSC Advances, 2018, 8(59), 33688.
101 Melchionna M, Bracamonte M V, Giuliani A, et al. Energy & Environmental Science, 2018, 11(6), 1571.
102 Guo X J, Yang L, Shen B F, et al. Materials Chemistry and Physics, 2020, 250, 123167.
103 Shakun J D, Clark P U, He F, et al. Nature, 2012, 484(7392), 49.
104 Chang Z W, Xu J J, Zhang X B. Advanced Energy Materials, 2017, 7(23), 1700875.
105 Zhang P, Zhao Y, Zhang X B. Chemical Society Reviews, 2018, 47(8), 2921.
106 Ci L J, Song L, Jin C H, et al. Nature Materials, 2010, 9(5), 430.
107 Banhart F, Kotakoski J, Krasheninnikov A V. ACS Nano, 2011, 5(1), 26.
108 Qie L, Lin Y, Connell J W, et al. Angewandte Chemie International Edition, 2017, 56(24), 6970.
109 Xu C F, Zhang K W, Zhang D, et al. Nano Energy, 2020, 68, 104318.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[3] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[4] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[5] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[6] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[7] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[8] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[9] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[10] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[11] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[12] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[13] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[14] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[15] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed