Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22070018-14    https://doi.org/10.11896/cldb.22070018
  无机非金属及其复合材料 |
质子交换膜燃料电池在线监测方法研究进展
李兰心1,2, 潘牧1,2, 郭伟1,2,*
1 先进能源科学与技术广东省实验室佛山分中心,广东 佛山 528000
2 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
Research Progress of Online Monitoring Methods for Proton Exchange Membrane Fuel Cells
LI Lanxin1,2, PAN Mu1,2, GUO Wei1,2,*
1 Foshan Xianhu Laboratory Branch of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528000, Guangdong, China
2 State Key Laboratory of New Materials Composite Technology of Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 14068KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 质子交换膜燃料电池作为一种高效、无污染的新一代发电技术在近年来得到广泛关注,但是其寿命问题依然严重制约其商业应用。通过对燃料电池状态进行在线监测来实现电池的快速故障诊断,是延长电池寿命的极有效的途径之一。本文对近年来质子交换膜燃料电池在线监测方向的文章进行了总结,并按照故障检测方法(包括极化曲线、循环伏安法、电化学阻抗谱等)进行分类讨论。同时,根据实际应用情况将单一检测方法和多种结合检测方法进行文献综述。另外,在总结现有的在线监测方法的基础上,本文提出了未来燃料电池在线监测需要解决的问题并进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李兰心
潘牧
郭伟
关键词:  质子交换膜燃料电池  燃料电池电堆  在线监测  故障诊断  电化学阻抗谱    
Abstract: Proton exchange membrane fuel cells, a new generation of efficient and pollution-free power generation technology, have received widespread attention in recent years. However, their limited battery life severely restricts their commercial applications. An effective strategy to extend the battery life is to rapidly diagnose faults in the fuel cell via monitoring its status online. This review summarizes recent developments in the online monitoring of proton exchange membrane fuel cells, and classifies and discusses them based on fault detection methods, including polarization curves, cyclic voltammograms, and electrochemical impedance spectra, and so on. Single and multiple combined detection methods are reviewed based on practical applications. In addition, the current limitations of each online monitoring method and the future prospects of online monitoring of fuel cells are discussed on the basis of existing on-line monitoring methods.
Key words:  proton exchange membrane fuel cell    fuel cell stack    online monitoring    fault diagnosis    electrochemical impedance spectroscopy
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TK91  
基金资助: 先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金(XHD2022-002)
通讯作者:  *郭伟,武汉理工大学材料复合新技术国家重点实验室副研究员、博士研究生导师。2008年武汉工程大学材料科学及控制工程专业本科毕业,2012年武汉理工大学材料工程专业硕士毕业,2016年德国卡尔斯鲁厄理工学院材料化学专业博士毕业。目前主要从事质子交换膜燃料电池等方面的研究工作。   
作者简介:  李兰心,2020年6月于湖北工业大学获得工学学士学位,现为武汉理工大学材料科学与工程学院硕士研究生,在郭伟副研究员的指导下进行研究。目前主要研究领域为质子交换膜燃料电池。
引用本文:    
李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
LI Lanxin, PAN Mu, GUO Wei. Research Progress of Online Monitoring Methods for Proton Exchange Membrane Fuel Cells. Materials Reports, 2024, 38(6): 22070018-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070018  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22070018
1 Zhang Y Y, Wang Y, Dai Y C, et al. Chinese Journal of Power Sources, 2012(6), 902 (in Chinese).
张园园, 王匀, 戴亚春, 等. 电源技术, 2012(6), 902.
2 Xiong M, He S R, Zhang Y, et al. Journal of Chongqing Technology and Business University(Natural Science Edition),2023, 40(4), 19(in Chinese).
熊牡, 何仕荣, 张勇, 等. 重庆工商大学学报(自然科学版), 2023, 40(4), 19.
3 Liu Z X, Qian W, Guo J W, et al. Chemical Industry and Engineering Progress, 2011, 23(Z1), 487(in Chinese).
刘志祥, 钱伟, 郭建伟, 等. 化学进展, 2011, 23(Z1), 487.
4 Satyapal P S. Fuel Cells, 2016, 4(15), 13.
5 Calderon A J, Gonzalez I, Calderon M, et al. Sensors (Basel), 2016, 16(3), 349.
6 Escobet T, Feroldi D, Lira S D, et al. Journal of Power Sources, 2009, 192(1), 216.
7 Wu J, Yuan X Z, Wang H, et al. International Journal of Hydrogen Energy, 2008, 33(6), 1735.
8 Zhang X J, Zhang T, Chen H C, et al. Applied Energy, 2021, 286, 116481.
9 Zhang J J. Pem Fuel Cell Electrocatalysts & Catalyst Layers, 2008, 53(4), 655.
10 Barbir F, Boston A, London H, et al. Elsevier Academic Press, DOI:10.1016/0360-3199(95)00087-9.
11 Hirschenhofer J H, Stauffer D B, Engleman R R, et al. Fuel cell handbook, Van Nostrand Reinhold, UK, 1998.
12 Ju H, Wang C Y. Journal of the Electrochemical Society, 2004, 151(11), A1954.
13 Real A, Arce A, Bordons C. Journal of Power Sources, 2007, 173, 310.
14 Fouquet N, Doulet C, Nouillant C. Journal of Power Sources, 2006, 159(2), 905.
15 Rubio M A, Urquia A, Dormido S. Journal of Power Sources, 2007, 171(2), 670.
16 Mennola T, Mikkola M, Noponen M, et al. Journal of Power Sources, 2002, 112(1), 261.
17 Britz D. Journal of Electroanalytical Chemistry, 1978, 88(3), 309.
18 Dhirde A M, Dale N V, Salehfar H, et al. IEEE Transactions on Energy Conversion, 2010, 25(3), 778.
19 Larminie J. Fuel cell systems explained /-2nd ed, John Wiley, USA, 2003.
20 Noponen M, Hottinen T, Mennola T, et al. Journal of Applied Electrochemistry, 2002, 32, 1081.
21 Barsoukov E, Macdonald R J. Impedance spectroscopy: theory, experiment, and applications, Wiley-Interscience, USA, 2005.
22 Cooper K R, Smith M. Journal of Power Sources, 2006, 160(2), 1088.
23 Zou Y, Xu X S, Ma H M,et al. Journal of Power Sources, 2015, 273, 793.
24 Propp K, Marinescu M, Auger D J, et al. Journal of Power Sources, 2016, 328, 289.
25 Jeppesen C, Araya S S, Sahlin S L, et al. International Journal of Hydrogen Energy, 2017, 42(24), 15851.
26 Adzakpa K P, Agbossou K, Dube Y, et al. IEEE Transactions on Energy Conversion, 2008, 23(2), 581.
27 Cho J, Kim H S, Min K. Journal of Power Sources, 2008, 185(1), 118.
28 Marignetti F, Minutillo M, Perna A, et al. IEEE Transactions on Industrial Electronics, 2011, 58(6), 2420.
29 Didierjean S, Lottin O, Maranzana G, et al. Electrochimica Acta, 2008, 53(24), 7313.
30 Ha P T, Moon H, Kim B H, et al. Biosensors & Bioelectronics, 2010, 25(7), 1629.
31 Chang B Y, Park S M. Annual Review of Analytical Chemistry, 2011, 3(1), 207.
32 Ciucci F, Chen C. Electrochimica Acta, 2015, 167, 439.
33 Macdonald D D. Electrochimica Acta, 2006, 51(8-9), 1376.
34 Tatarkovic M, Broncova G, Krondak M. Chemicke Listy, 2012, 106(11), 1067.
35 Giner-Sanz J J, Ortega E M, Perez-Herranz V. Electrochimica Acta, 2016, 209, 254.
36 Kim J, Lee I, Tak Y, et al. Renewable Energy, 2013, 51(1), 302.
37 Rezaei N S M, Phillips R K, Hoorfar M. Journal of Electroanalytical Chemistry, 2016, 775(2), 273.
38 Garland J E, Pettit C M, Roy D. Electrochimica Acta, 2004, 49(16), 2623.
39 Popkirov G S, Schindler R N. Review of Scientific Instruments, 1993, 64(11), 3111.
40 Kurzweil P, Fischle H J. Journal of Power Sources, 2004, 127(1-2), 331.
41 Parthasarathy A, Dave B, Srinivasan S, et al. Lippincott Williams & Wilkins, China, 1992, 139(6), 1634.
42 Barbir F, Gorgun H, Wang X. Journal of Power Sources, 2005, 141(1), 96.
43 Ren P, Pei P, Li Y, et al. Applied Energy, 2019, 239, 785.
44 Ciureanu M, Roberge R. the Journal of Physical Chemistry B, 2001, 105(17), 3531.
45 Eikerling M, Kornyshev A A. Journal of Electroanalytical Chemistry, 1999, 475(2), 107.
46 Makharia R, Mathias M F, Baker D R. Computers & Biomedical Research An International Journal, 2005, 152(5), 271.
47 Jia N Y, Martin R B, Qi Z G, et al. Electrochimica Acta, 2001, 46(18), 2863.
48 Chevalier S, Trichet D, Auvity B, et al. International Journal of Hydrogen Energy, 2013, 38(26), 11609.
49 Freire T, Gonzalez E R. Journal of Electroanalytical Chemistry, 2001, 503(1-2), 57.
50 Chandesris M, Robin C, Gerard M, et al. Electrochimica Acta, 2015, 180, 581.
51 Ferrero R, Dotelli G, Stampino P G, et al. In: IEEE International Workshop on Applied Measurements for Power Systems, Aachen, 2012, pp.1.
52 Setzler B P, Fuller T F. Journal of the Electrochemical Society, 2015, 162(6), F519.
53 Giner-Sanz J J, Ortega E M, Perez-Herranz V. Fuel Cells, 2016, 16(4), 469.
54 Wei A, Schindler S, Galbiati S, et al. Electrochimica Acta, 2017, 230, 391.
55 Hinds G, Brightman E. Electrochemistry Communications, 2012, 17(1), 26.
56 Debenjak A, Boskoski P, B. Musizza, et al. Journal of Power Sources, 2014, 254, 112.
57 Oszcipok M, Riemann D, Kronenwett U. Journal of Power Sources, 2005, 145(2), 407.
58 Koponen U, Kumpulainen H, Bergelin M, et al. Journal of Power Sources, 2003, 118(1-2), 325.
59 Tamizhmani G. Journal of the Electrochemical Society, 1994, 141(4), 968.
60 Cha S W, O'Hayre R, Colella W, et al. Fuel ceu fundamentals, Springer, US, 2009.
61 Ramani V, Kunz H R, Fenton J M. Journal of Power Sources, 2005, 152, 182.
62 Lee K S, Lee B S, Yoo S J, et al. International Journal of Hydrogen Energy, 2012, 37(7), 5891.
63 Brightman E, Hinds G, O'Malley R. Journal of Power Sources, 2013, 242, 244.
64 Hartung I, Kirsch S, Zihrul P, et al. Journal of Power Sources, 2016, 307, 280.
65 Denisov E S, Evdokimov Y K, Martemianov S, et al. Fuel Cells, 2017, 17(2), 225.
66 Bernard J, Boinet M, Chatenet M, et al. Electrochemical and Solid State Letters, 2005, 7(8), E53.
67 Nogueira R P, Lailler P, Torcheux L. Journal of Power Sources, 2006, 158(2), 1012.
68 Gabrielli C, Huet F, Nogueira R P. Electrochimica Acta, 2005, 50(18), 3726.
69 Mészáros G, Szenes I, Lengyel B. Electrochemistry Communications, 2004, 11(6), 1185.
70 Legros B, Thivel P X, Bultel Y, et al. Electrochemistry Communications, 2011, 13(12), 1514.
71 Denisov E S, Salakhova A S, Adiutantov N A, et al. In:International Conference on Materials, Alloys and Experimental Mechanics (ICMAEM), Hyderabad, 2017.
72 Rubio M A, Bethune K, Urquia A, et al. International Journal of Hydrogen Energy, 2016, 41(33), 14991.
73 Petrone R, Zheng Z, Hissel D, et al. International Journal of Hydrogen Energy, 2013, 38(17), 7077.
74 Tang Z, Huang Q A, Wang Y J, et al. Journal of Power Sources, 2020, 468, 228361.
75 Dierickx S, Weber A, Ivers-Tiffée E. Electrochimica Acta, 2020, 355, 136764.
76 Schichlein H, Müller A, Voigts M, et al. Journal of Applied Electroche-mistry, 2002, 32(8), 875.
77 Weber A, EIvers-Tiffée. Journal of Power Sources, 2018, 402, 24.
78 Wang Q, Hu Z, Xu L, et al. International Journal of Energy Research, 2021, 45(11), 15948.
79 Simon Araya S, Zhou F, Lennart Sahlin S, et al. Energies, 2019, 12(1), 152.
80 Petrone R, Zheng Z, Hissel D, et al. International Journal of Hydrogen Energy, 2013, 38(17), 7077.
81 Zheng Z, Petrone R, Pera M C, et al. International Journal of Hydrogen Energy, 2013, 38(21), 8914.
82 Dotelli G, Ferrero R, Stampino P G, et al. IEEE Transactions on Instrumentation and Measurement, 2014, 63(7), 1693.
83 Stepančič M, Juričić Ð, Boškoski P. Energy Conversion and Management, 2019, 195, 76.
84 Shen J, Homayouni H, Wang J. IEEE Transactions on Industrial Electronics, 2021, 68(9), 8819.
85 Lee Y H, Kim J, Yoo S. Journal of Power Sources, 2016, 326, 264.
86 Li J, Pan H, Zhang S J, et al. Advanced Materials Research, 2011, (219-220), 383.
87 Zhao X, Xu L, Li J, et al. International Journal of Hydrogen Energy, 2017, 42(29), 18524.
88 Yue M, Masry Z Al, Jemei S, et al. International Journal of Hydrogen Energy, 2021, 46(24), 13206.
89 Jeppesen C, Araya S S, Sahlin S L, et al. International Journal of Hydrogen Energy, 2017, 42(24), 15851.
90 Steffy N J, Selvaganesh S V, Kumar L M, et al. Journal of Power Sources, 2018, 404(15), 81.
91 Kurz T, Hakenjos A, Krämer J, et al. Journal of Power Sources, 2008, 180(2), 742.
92 Lochner T, Perchthaler M, Binder J T, et al. ChemElectroChem, 2020, 13(7), 2784.
93 Chevalier S, Auvity B, Olivier J C, et al. Fuel Cells, 2014, 14(3), 416.
94 Hong P, Xu L, Jiang H, et al. International Journal of Hydrogen Energy, 2017, 42(30), 19156.
95 Goshtasbi A, Pence B L, Chen J, et al. Journal of The Electrochemical Society, 2020, 167(2), 024518.
[1] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[2] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[3] 姚艺, 任延杰, 彭玉宬, 陈荐, 邱玮, 周立波. 304不锈钢在熔融多硫化钠中的高温腐蚀行为研究[J]. 材料导报, 2023, 37(14): 22010026-5.
[4] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[5] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[6] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[7] 张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
[8] 吴国玉, 郑晔, 王明涌, 邢志军. Co修饰的碳载Pt纳米粒子催化剂的制备与表征[J]. 材料导报, 2021, 35(z2): 306-310.
[9] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[10] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[11] 林丽, 邓春, 经昊达, 宋鹏, 高建华, 王海洋, 张向军, 张秀丽. 基于油液在线监测的齿轮箱磨损趋势分析与研究[J]. 材料导报, 2018, 32(18): 3230-3234.
[12] 吕路强, 沈骏, 向路, 刘双翼, 谢雄, 周猛兵. 碳基纳米结构作为燃料电池催化剂载体的研究进展*[J]. 材料导报, 2017, 31(21): 9-18.
[13] 蔡超, 陈亚男, 傅凯林, 潘牧. 质子交换膜燃料电池中Pt/C及Pt合金/C催化剂的衰退机制研究综述[J]. 《材料导报》期刊社, 2017, 31(17): 20-26.
[14] 李冰洁, 江旭东, 潘春旭. 铜锡青铜合金腐蚀过程中的电化学与微结构特征研究*[J]. 《材料导报》期刊社, 2017, 31(11): 138-143.
[15] 郭浩, 田一梅, 裴云生, 陈瑛, 刘星飞. 氯离子对球墨铸铁管土壤腐蚀影响机理研究*[J]. 《材料导报》期刊社, 2017, 31(11): 151-157.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed