Research Progress of Online Monitoring Methods for Proton Exchange Membrane Fuel Cells
LI Lanxin1,2, PAN Mu1,2, GUO Wei1,2,*
1 Foshan Xianhu Laboratory Branch of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528000, Guangdong, China 2 State Key Laboratory of New Materials Composite Technology of Wuhan University of Technology, Wuhan 430070, China
Abstract: Proton exchange membrane fuel cells, a new generation of efficient and pollution-free power generation technology, have received widespread attention in recent years. However, their limited battery life severely restricts their commercial applications. An effective strategy to extend the battery life is to rapidly diagnose faults in the fuel cell via monitoring its status online. This review summarizes recent developments in the online monitoring of proton exchange membrane fuel cells, and classifies and discusses them based on fault detection methods, including polarization curves, cyclic voltammograms, and electrochemical impedance spectra, and so on. Single and multiple combined detection methods are reviewed based on practical applications. In addition, the current limitations of each online monitoring method and the future prospects of online monitoring of fuel cells are discussed on the basis of existing on-line monitoring methods.
1 Zhang Y Y, Wang Y, Dai Y C, et al. Chinese Journal of Power Sources, 2012(6), 902 (in Chinese).
张园园, 王匀, 戴亚春, 等. 电源技术, 2012(6), 902.
2 Xiong M, He S R, Zhang Y, et al. Journal of Chongqing Technology and Business University(Natural Science Edition),2023, 40(4), 19(in Chinese).
熊牡, 何仕荣, 张勇, 等. 重庆工商大学学报(自然科学版), 2023, 40(4), 19.
3 Liu Z X, Qian W, Guo J W, et al. Chemical Industry and Engineering Progress, 2011, 23(Z1), 487(in Chinese).
刘志祥, 钱伟, 郭建伟, 等. 化学进展, 2011, 23(Z1), 487.
4 Satyapal P S. Fuel Cells, 2016, 4(15), 13.
5 Calderon A J, Gonzalez I, Calderon M, et al. Sensors (Basel), 2016, 16(3), 349.
6 Escobet T, Feroldi D, Lira S D, et al. Journal of Power Sources, 2009, 192(1), 216.
7 Wu J, Yuan X Z, Wang H, et al. International Journal of Hydrogen Energy, 2008, 33(6), 1735.
8 Zhang X J, Zhang T, Chen H C, et al. Applied Energy, 2021, 286, 116481.
9 Zhang J J. Pem Fuel Cell Electrocatalysts & Catalyst Layers, 2008, 53(4), 655.
10 Barbir F, Boston A, London H, et al. Elsevier Academic Press, DOI:10.1016/0360-3199(95)00087-9.
11 Hirschenhofer J H, Stauffer D B, Engleman R R, et al. Fuel cell handbook, Van Nostrand Reinhold, UK, 1998.
12 Ju H, Wang C Y. Journal of the Electrochemical Society, 2004, 151(11), A1954.
13 Real A, Arce A, Bordons C. Journal of Power Sources, 2007, 173, 310.
14 Fouquet N, Doulet C, Nouillant C. Journal of Power Sources, 2006, 159(2), 905.
15 Rubio M A, Urquia A, Dormido S. Journal of Power Sources, 2007, 171(2), 670.
16 Mennola T, Mikkola M, Noponen M, et al. Journal of Power Sources, 2002, 112(1), 261.
17 Britz D. Journal of Electroanalytical Chemistry, 1978, 88(3), 309.
18 Dhirde A M, Dale N V, Salehfar H, et al. IEEE Transactions on Energy Conversion, 2010, 25(3), 778.
19 Larminie J. Fuel cell systems explained /-2nd ed, John Wiley, USA, 2003.
20 Noponen M, Hottinen T, Mennola T, et al. Journal of Applied Electrochemistry, 2002, 32, 1081.
21 Barsoukov E, Macdonald R J. Impedance spectroscopy: theory, experiment, and applications, Wiley-Interscience, USA, 2005.
22 Cooper K R, Smith M. Journal of Power Sources, 2006, 160(2), 1088.
23 Zou Y, Xu X S, Ma H M,et al. Journal of Power Sources, 2015, 273, 793.
24 Propp K, Marinescu M, Auger D J, et al. Journal of Power Sources, 2016, 328, 289.
25 Jeppesen C, Araya S S, Sahlin S L, et al. International Journal of Hydrogen Energy, 2017, 42(24), 15851.
26 Adzakpa K P, Agbossou K, Dube Y, et al. IEEE Transactions on Energy Conversion, 2008, 23(2), 581.
27 Cho J, Kim H S, Min K. Journal of Power Sources, 2008, 185(1), 118.
28 Marignetti F, Minutillo M, Perna A, et al. IEEE Transactions on Industrial Electronics, 2011, 58(6), 2420.
29 Didierjean S, Lottin O, Maranzana G, et al. Electrochimica Acta, 2008, 53(24), 7313.
30 Ha P T, Moon H, Kim B H, et al. Biosensors & Bioelectronics, 2010, 25(7), 1629.
31 Chang B Y, Park S M. Annual Review of Analytical Chemistry, 2011, 3(1), 207.
32 Ciucci F, Chen C. Electrochimica Acta, 2015, 167, 439.
33 Macdonald D D. Electrochimica Acta, 2006, 51(8-9), 1376.
34 Tatarkovic M, Broncova G, Krondak M. Chemicke Listy, 2012, 106(11), 1067.
35 Giner-Sanz J J, Ortega E M, Perez-Herranz V. Electrochimica Acta, 2016, 209, 254.
36 Kim J, Lee I, Tak Y, et al. Renewable Energy, 2013, 51(1), 302.
37 Rezaei N S M, Phillips R K, Hoorfar M. Journal of Electroanalytical Chemistry, 2016, 775(2), 273.
38 Garland J E, Pettit C M, Roy D. Electrochimica Acta, 2004, 49(16), 2623.
39 Popkirov G S, Schindler R N. Review of Scientific Instruments, 1993, 64(11), 3111.
40 Kurzweil P, Fischle H J. Journal of Power Sources, 2004, 127(1-2), 331.
41 Parthasarathy A, Dave B, Srinivasan S, et al. LippincottWilliams & Wilkins, China, 1992, 139(6), 1634.
42 Barbir F, Gorgun H, Wang X. Journal of Power Sources, 2005, 141(1), 96.
43 Ren P, Pei P, Li Y, et al. Applied Energy, 2019, 239, 785.
44 Ciureanu M, Roberge R. the Journal of Physical Chemistry B, 2001, 105(17), 3531.
45 Eikerling M, Kornyshev A A. Journal of Electroanalytical Chemistry, 1999, 475(2), 107.
46 Makharia R, Mathias M F, Baker D R. Computers & Biomedical Research An International Journal, 2005, 152(5), 271.
47 Jia N Y, Martin R B, Qi Z G, et al. Electrochimica Acta, 2001, 46(18), 2863.
48 Chevalier S, Trichet D, Auvity B, et al. International Journal of Hydrogen Energy, 2013, 38(26), 11609.
49 Freire T, Gonzalez E R. Journal of Electroanalytical Chemistry, 2001, 503(1-2), 57.
50 Chandesris M, Robin C, Gerard M, et al. Electrochimica Acta, 2015, 180, 581.
51 Ferrero R, Dotelli G, Stampino P G, et al. In: IEEE International Workshop on Applied Measurements for Power Systems, Aachen, 2012, pp.1.
52 Setzler B P, Fuller T F. Journal of the Electrochemical Society, 2015, 162(6), F519.
53 Giner-Sanz J J, Ortega E M, Perez-Herranz V. Fuel Cells, 2016, 16(4), 469.
54 Wei A, Schindler S, Galbiati S, et al. Electrochimica Acta, 2017, 230, 391.
55 Hinds G, Brightman E. Electrochemistry Communications, 2012, 17(1), 26.
56 Debenjak A, Boskoski P, B. Musizza, et al. Journal of Power Sources, 2014, 254, 112.
57 Oszcipok M, Riemann D, Kronenwett U. Journal of Power Sources, 2005, 145(2), 407.
58 Koponen U, Kumpulainen H, Bergelin M, et al. Journal of Power Sources, 2003, 118(1-2), 325.
59 Tamizhmani G. Journal of the Electrochemical Society, 1994, 141(4), 968.
60 Cha S W, O'Hayre R, Colella W, et al. Fuel ceu fundamentals, Springer, US, 2009.
61 Ramani V, Kunz H R, Fenton J M. Journal of Power Sources, 2005, 152, 182.
62 Lee K S, Lee B S, Yoo S J, et al. International Journal of Hydrogen Energy, 2012, 37(7), 5891.
63 Brightman E, Hinds G, O'Malley R. Journal of Power Sources, 2013, 242, 244.
64 Hartung I, Kirsch S, Zihrul P, et al. Journal of Power Sources, 2016, 307, 280.
65 Denisov E S, Evdokimov Y K, Martemianov S, et al. Fuel Cells, 2017, 17(2), 225.
66 Bernard J, Boinet M, Chatenet M, et al. Electrochemical and Solid State Letters, 2005, 7(8), E53.
67 Nogueira R P, Lailler P, Torcheux L. Journal of Power Sources, 2006, 158(2), 1012.
68 Gabrielli C, Huet F, Nogueira R P. Electrochimica Acta, 2005, 50(18), 3726.
69 Mészáros G, Szenes I, Lengyel B. Electrochemistry Communications, 2004, 11(6), 1185.
70 Legros B, Thivel P X, Bultel Y, et al. Electrochemistry Communications, 2011, 13(12), 1514.
71 Denisov E S, Salakhova A S, Adiutantov N A, et al. In:International Conference on Materials, Alloys and Experimental Mechanics (ICMAEM), Hyderabad, 2017.
72 Rubio M A, Bethune K, Urquia A, et al. International Journal of Hydrogen Energy, 2016, 41(33), 14991.
73 Petrone R, Zheng Z, Hissel D, et al. InternationalJournal of Hydrogen Energy, 2013, 38(17), 7077.
74 Tang Z, Huang Q A, Wang Y J, et al. Journal of Power Sources, 2020, 468, 228361.
75 Dierickx S, Weber A, Ivers-Tiffée E. Electrochimica Acta, 2020, 355, 136764.
76 Schichlein H, Müller A, Voigts M, et al. Journal of Applied Electroche-mistry, 2002, 32(8), 875.
77 Weber A, EIvers-Tiffée. Journal of Power Sources, 2018, 402, 24.
78 Wang Q, Hu Z, Xu L, et al. International Journal of Energy Research, 2021, 45(11), 15948.
79 Simon Araya S, Zhou F, Lennart Sahlin S, et al. Energies, 2019, 12(1), 152.
80 Petrone R, Zheng Z, Hissel D, et al. International Journal of Hydrogen Energy, 2013, 38(17), 7077.
81 Zheng Z, Petrone R, Pera M C, et al. International Journal of Hydrogen Energy, 2013, 38(21), 8914.
82 Dotelli G, Ferrero R, Stampino P G, et al. IEEE Transactions on Instrumentation and Measurement, 2014, 63(7), 1693.
83 Stepančič M, Juričić Ð, Boškoski P. Energy Conversion and Management, 2019, 195, 76.
84 Shen J, Homayouni H, Wang J. IEEE Transactions on Industrial Electronics, 2021, 68(9), 8819.
85 Lee Y H, Kim J, Yoo S. Journal of Power Sources, 2016, 326, 264.
86 Li J, Pan H, Zhang S J, et al. Advanced Materials Research, 2011, (219-220), 383.
87 Zhao X, Xu L, Li J, et al. International Journal of Hydrogen Energy, 2017, 42(29), 18524.
88 Yue M, Masry Z Al, Jemei S, et al. International Journal of Hydrogen Energy, 2021, 46(24), 13206.
89 Jeppesen C, Araya S S, Sahlin S L, et al. International Journal of Hydrogen Energy, 2017, 42(24), 15851.
90 Steffy N J, Selvaganesh S V, Kumar L M, et al. Journal of Power Sources, 2018, 404(15), 81.
91 Kurz T, Hakenjos A, Krämer J, et al. Journal of Power Sources, 2008, 180(2), 742.
92 Lochner T, Perchthaler M, Binder J T, et al. ChemElectroChem, 2020, 13(7), 2784.
93 Chevalier S, Auvity B, Olivier J C, et al. Fuel Cells, 2014, 14(3), 416.
94 Hong P, Xu L, Jiang H, et al. International Journal of Hydrogen Energy, 2017, 42(30), 19156.
95 Goshtasbi A, Pence B L, Chen J, et al. Journal of The Electrochemical Society, 2020, 167(2), 024518.