Abstract: The effects of dissolved oxygen on the CO2 corrosion behavior of 3Cr steel were studied by immersion test and electrochemical test. SEM, EDS, XRD and XPS techniques were used to characterize and analyze corrosion product films. The results showed that the corrosion pro-duct film of 3Cr steel in the oxygen-free environment was relatively dense, and mainly composed of FeCO3 and amorphous Cr(OH)3 and Cr2O3, while in the oxygen-containing environment, under the influence of dissolved oxygen, the product film was loose and porous, and mainly composed of Fe2O3, Fe3O4 and CaCO3, which created conditions for the occurrence of local corrosion. In the oxygen-containing environment, Fe(OH)3 and Cr(OH)3 competed for deposition on the surface of the matrix, which resulted in uneven distribution of Cr elements and pitting corrosion. Due to the difference in local protection, a small anode to a cathode corrosion couple pair was formed on the surface of the matrix, then the pitting corrosion rate increased. Electrochemical tests showed that the corrosion of 3Cr steel in both atmospheres was controlled by the cathodic reaction, with dissolved oxygen as the depolarizing agent and the cathodic reaction as oxygen absorption. The presence of dissolved oxygen increased the cathode mass transfer rate and self-corrosion current density, promoted the cathodic reaction, accelerated the dissolution of the anode, and reduced the film resistance and charge transfer resistance of the product and increased the corrosion rate.
王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
WANG Fan, ZHAO Guoxian, FANG Kun, PEI Wenxia, DING Langyong, LIU Ranran. Study on Corrosion Behavior of 3Cr Steel in an O2-containing CO2 Environment. Materials Reports, 2024, 38(23): 23070093-8.
1 Li F, Yang Z W, Zeng W G, et al. Material Protection, 2021, 54(7), 155 (in Chinese). 李芳, 杨志文, 曾文广, 等. 材料保护, 2021, 54(7), 155. 2 Jing G L, Li S L, Xing L J, et al. Advanced Materials Research, 2010, 113, 231. 3 Hu F T, Zhao M F, Xing X, et al. Material Protection, 2020, 53(10), 115 (in Chinese). 胡芳婷, 赵密锋, 邢星, 等. 材料保护, 2020, 53(10), 115. 4 Guo X M, Dai Q W, Zhang P, et al. Materials Science Forum, 2018, 937, 51. 5 Lu Y, Jing H, Han Y, et al. Materials Chemistry and Physics, 2016, 178, 160. 6 Zhao Y, Liu W, Dong B, et al. Engineering Failure Analysis, 2022, 133, 105995. 7 Jia Z, Li X, Du C, et al. Materials Chemistry and Physics, 2012, 132(2), 258. 8 Hua Y, Barker R, Neville A. Applied Surface Science, 2015, 356. 9 Li Z, Qiu J, Zhou X Y, et al. Journal of Xi'an Shiyou University (Na-tural Science Edition), 2022, 37(2), 118 (in Chinese). 李臻, 邱婕, 周晓义, 等. 西安石油大学学报(自然科学版), 2022, 37(2), 118. 10 Li N, Yuan Q, Bai Y W, et al. Material Protection, 2023, 56(7), 83(in Chinese). 李楠, 袁青, 白耀文, 等. 材料保护, 2023, 56(7), 83. 11 Gao X F, Xu L Q, Liu J, et al. Material Protection, 2023, 56(4), 29 (in Chinese). 高晓飞, 徐立前, 刘佳, 等. 材料保护, 2023, 56(4), 29. 12 Lin X, Liu W, Wu F, et al. Applied Surface Science, 2015, 329, 104. 13 Lin X Q, Liu W, Zhang J, et al. Journal of Physical Chemistry, 2013, 29(11), 2405 (in Chinese). 林学强, 柳伟, 张晶, 等. 物理化学学报, 2013, 29(11), 2405. 14 Xia L, Li Y, Ma L, et al. Materials (Basel, Switzerland), 2020, 13(3), 791. 15 Xu L N, Wang B, Lu M X. Acta Metallurgica Sinica, 2016, 52(6), 672 (in Chinese). 许立宁, 王贝, 路民旭. 金属学报, 2016, 52(6), 672. 16 Zhu J, Xu L, Lu M, et al. International Journal of Electrochemical Science, 2015, 10(2), 1434. 17 Qi W, Wang W, Yang X, et al. Journal of Materials Science & Technology, 2022, 109(14), 76. 18 Wu Y D, Yang Y, Zhang S H, et al. China Surface Engineering, 2019, 32(6), 63 (in Chinese). 巫业栋, 杨英, 张世宏, 等. 中国表面工程, 2019, 32(6), 63. 19 Chai T X, Yan L Q, Xu H T, et al. Surface Technology, 2023, 52(3), 276 (in Chinese). 柴廷玺, 晏丽琴, 徐宏彤, 等. 表面技术, 2023, 52(3), 276. 20 Chen L, Liu W, Dong B, et al. Journal of Materials Engineering and Performance, 2022, 31(6), 4864. 21 Shi W, Liu Y, Sun W, et al. Chinese Journal of Chemical Engineering, 2022, 52(12), 136. 22 Song X Q, Wang X Y, Wang Y R. Material Protection, 2019, 52(8), 61 (in Chinese). 宋晓琴, 王喜悦, 王彦然. 材料保护, 2019, 52(8), 61. 23 Wang X, Liu P, Fu M, et al. Chemosphere, 2016, 155, 39. 24 Dong Y, Song G-L, Zhang J, et al. Journal of Materials Science & Technology, 2022, 128(33), 107. 25 Jiang S, Jiang L, Wang Z, et al. Construction and Building Materials, 2017, 150, 238. 26 Lv X H, Zhao G X, Wang Y, et al. Journal of Iron and Steel Research, 2010, 22(7), 23 (in Chinese). 吕祥鸿, 赵国仙, 王宇, 等. 钢铁研究学报, 2010, 22(7), 23. 27 Guo S, Xu L, Zhang L, et al. Corrosion Science, 2016, 110, 123. 28 Song X Q, Wang Y R, Liang J J, et al. Natural Gas and Oil, 2018, 36(6), 92 (in Chinese). 宋晓琴, 王彦然, 梁建军, 等. 天然气与石油, 2018, 36(6), 92. 29 Xu L, Wang B, Zhu J, et al. Applied Surface Science, 2016, 379, 39. 30 Wu L, Yang D, Zhang G, et al. Applied Surface Science, 2018, 431, 177. 31 Shu Y, Yan M C, Wei Y H, et al. Acta Metallurgica Sinica, 2018, 54(10), 1408 (in Chinese). 舒韵, 闫茂成, 魏英华, 等. 金属学报, 2018, 54(10), 1408. 32 Liu B, Mu X, Yang Y, et al. Journal of Materials Science & Technology, 2019, 35(7), 1228. 33 Fahim A, Ghods P, Isgor O B, et al. Materials and Corrosion, 2018, 69(12), 1784. 34 Sun J B, Liu W, Chang W, et al. Acta Metallurgica Sinica, 2009, 45(1), 84 (in Chinese). 孙建波, 柳伟, 常炜, 等. 金属学报, 2009, 45(1), 84. 35 Bai H T, Min Y, Dong X W, et al. Journal of Chinese Society for Corrosion and Protection, 2020, 40(4), 295 (in Chinese). 白海涛, 杨敏, 董小卫, 等. 中国腐蚀与防护学报, 2020, 40(4), 295.