Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23070093-8    https://doi.org/10.11896/cldb.23070093
  金属与金属基复合材料 |
3Cr钢在含O2的CO2环境中的腐蚀行为研究
王帆,赵国仙*, 方堃, 裴文霞, 丁浪勇, 刘冉冉
西安石油大学材料科学与工程学院,西安 710065
Study on Corrosion Behavior of 3Cr Steel in an O2-containing CO2 Environment
WANG Fan, ZHAO Guoxian*, FANG Kun, PEI Wenxia, DING Langyong, LIU Ranran
School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 15243KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过浸泡试验和电化学测试,研究溶解氧对3Cr钢CO2腐蚀行为的影响。采用SEM、EDS、XRD及XPS技术对腐蚀产物膜进行表征和分析。结果表明,在不含氧环境中,3Cr钢腐蚀产物膜较为致密,主要由FeCO3及非晶态的Cr(OH)3和Cr2O3组成,而在含氧环境中,溶解氧会影响腐蚀产物膜,产物膜疏松多孔,由Fe2O3、Fe3O4、CaCO3组成,为局部腐蚀的发生创造条件。在含氧环境中,Fe(OH)3和Cr(OH)3在基体表面竞争沉积,造成Cr元素分布不均匀,导致点蚀发生。由于局部区域保护性的差异,基体表面形成了小阳极大阴极的腐蚀电偶对,点蚀速率增大。电化学测试表明,3Cr钢在两种气氛中的腐蚀均受阴极反应控制,溶解氧作为去极化剂,阴极反应为吸氧反应。溶解氧的存在增大了阴极传质速率和自腐蚀电流密度,促进了阴极反应的进行,加速了阳极的溶解,同时降低了产物膜电阻和电荷传递电阻,提高了腐蚀速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王帆
赵国仙
方堃
裴文霞
丁浪勇
刘冉冉
关键词:  3Cr钢  CO2-O2腐蚀  溶解氧  腐蚀行为  电化学阻抗谱    
Abstract: The effects of dissolved oxygen on the CO2 corrosion behavior of 3Cr steel were studied by immersion test and electrochemical test. SEM, EDS, XRD and XPS techniques were used to characterize and analyze corrosion product films. The results showed that the corrosion pro-duct film of 3Cr steel in the oxygen-free environment was relatively dense, and mainly composed of FeCO3 and amorphous Cr(OH)3 and Cr2O3, while in the oxygen-containing environment, under the influence of dissolved oxygen, the product film was loose and porous, and mainly composed of Fe2O3, Fe3O4 and CaCO3, which created conditions for the occurrence of local corrosion. In the oxygen-containing environment, Fe(OH)3 and Cr(OH)3 competed for deposition on the surface of the matrix, which resulted in uneven distribution of Cr elements and pitting corrosion. Due to the difference in local protection, a small anode to a cathode corrosion couple pair was formed on the surface of the matrix, then the pitting corrosion rate increased. Electrochemical tests showed that the corrosion of 3Cr steel in both atmospheres was controlled by the cathodic reaction, with dissolved oxygen as the depolarizing agent and the cathodic reaction as oxygen absorption. The presence of dissolved oxygen increased the cathode mass transfer rate and self-corrosion current density, promoted the cathodic reaction, accelerated the dissolution of the anode, and reduced the film resistance and charge transfer resistance of the product and increased the corrosion rate.
Key words:  3Cr steel    CO2-O2 corrosion    dissolved oxygen    corrosion behavior    electrochemical impedance spectroscopy
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TG174.2  
通讯作者:  * 赵国仙,西安石油大学材料科学与工程学院教授、硕士研究生导师。1990年毕业于上海交通大学材料科学与工程学院金相热处理专业,获工学学士学位;1996年毕业于西安交通大学,获工学硕士学位;2005年毕业于西安交通大学,获工学博士学位。主要研究方向:石油管材高温高压环境中的H2S腐蚀、CO2腐蚀、O2腐蚀、应力腐蚀、电偶腐蚀、缝隙腐蚀、细菌腐蚀的腐蚀行为;各类石油管材的研发和应用;涂镀渗层、缓蚀剂、阴极保护等防护措施的评价及应用;石油管材的腐蚀失效分析。在国内外公开刊物发表论文100余篇,被SCI和EI检索20篇。419670963@qq.com   
作者简介:  王帆,2021年7月于西安工程大学获得工学学士学位。2021年9月至今为西安石油大学材料科学与工程学院硕士研究生,在赵国仙教授的指导下进行研究。目前主要研究领域为材料腐蚀与防护。
引用本文:    
王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
WANG Fan, ZHAO Guoxian, FANG Kun, PEI Wenxia, DING Langyong, LIU Ranran. Study on Corrosion Behavior of 3Cr Steel in an O2-containing CO2 Environment. Materials Reports, 2024, 38(23): 23070093-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070093  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23070093
1 Li F, Yang Z W, Zeng W G, et al. Material Protection, 2021, 54(7), 155 (in Chinese).
李芳, 杨志文, 曾文广, 等. 材料保护, 2021, 54(7), 155.
2 Jing G L, Li S L, Xing L J, et al. Advanced Materials Research, 2010, 113, 231.
3 Hu F T, Zhao M F, Xing X, et al. Material Protection, 2020, 53(10), 115 (in Chinese).
胡芳婷, 赵密锋, 邢星, 等. 材料保护, 2020, 53(10), 115.
4 Guo X M, Dai Q W, Zhang P, et al. Materials Science Forum, 2018, 937, 51.
5 Lu Y, Jing H, Han Y, et al. Materials Chemistry and Physics, 2016, 178, 160.
6 Zhao Y, Liu W, Dong B, et al. Engineering Failure Analysis, 2022, 133, 105995.
7 Jia Z, Li X, Du C, et al. Materials Chemistry and Physics, 2012, 132(2), 258.
8 Hua Y, Barker R, Neville A. Applied Surface Science, 2015, 356.
9 Li Z, Qiu J, Zhou X Y, et al. Journal of Xi'an Shiyou University (Na-tural Science Edition), 2022, 37(2), 118 (in Chinese).
李臻, 邱婕, 周晓义, 等. 西安石油大学学报(自然科学版), 2022, 37(2), 118.
10 Li N, Yuan Q, Bai Y W, et al. Material Protection, 2023, 56(7), 83(in Chinese).
李楠, 袁青, 白耀文, 等. 材料保护, 2023, 56(7), 83.
11 Gao X F, Xu L Q, Liu J, et al. Material Protection, 2023, 56(4), 29 (in Chinese).
高晓飞, 徐立前, 刘佳, 等. 材料保护, 2023, 56(4), 29.
12 Lin X, Liu W, Wu F, et al. Applied Surface Science, 2015, 329, 104.
13 Lin X Q, Liu W, Zhang J, et al. Journal of Physical Chemistry, 2013, 29(11), 2405 (in Chinese).
林学强, 柳伟, 张晶, 等. 物理化学学报, 2013, 29(11), 2405.
14 Xia L, Li Y, Ma L, et al. Materials (Basel, Switzerland), 2020, 13(3), 791.
15 Xu L N, Wang B, Lu M X. Acta Metallurgica Sinica, 2016, 52(6), 672 (in Chinese).
许立宁, 王贝, 路民旭. 金属学报, 2016, 52(6), 672.
16 Zhu J, Xu L, Lu M, et al. International Journal of Electrochemical Science, 2015, 10(2), 1434.
17 Qi W, Wang W, Yang X, et al. Journal of Materials Science & Technology, 2022, 109(14), 76.
18 Wu Y D, Yang Y, Zhang S H, et al. China Surface Engineering, 2019, 32(6), 63 (in Chinese).
巫业栋, 杨英, 张世宏, 等. 中国表面工程, 2019, 32(6), 63.
19 Chai T X, Yan L Q, Xu H T, et al. Surface Technology, 2023, 52(3), 276 (in Chinese).
柴廷玺, 晏丽琴, 徐宏彤, 等. 表面技术, 2023, 52(3), 276.
20 Chen L, Liu W, Dong B, et al. Journal of Materials Engineering and Performance, 2022, 31(6), 4864.
21 Shi W, Liu Y, Sun W, et al. Chinese Journal of Chemical Engineering, 2022, 52(12), 136.
22 Song X Q, Wang X Y, Wang Y R. Material Protection, 2019, 52(8), 61 (in Chinese).
宋晓琴, 王喜悦, 王彦然. 材料保护, 2019, 52(8), 61.
23 Wang X, Liu P, Fu M, et al. Chemosphere, 2016, 155, 39.
24 Dong Y, Song G-L, Zhang J, et al. Journal of Materials Science & Technology, 2022, 128(33), 107.
25 Jiang S, Jiang L, Wang Z, et al. Construction and Building Materials, 2017, 150, 238.
26 Lv X H, Zhao G X, Wang Y, et al. Journal of Iron and Steel Research, 2010, 22(7), 23 (in Chinese).
吕祥鸿, 赵国仙, 王宇, 等. 钢铁研究学报, 2010, 22(7), 23.
27 Guo S, Xu L, Zhang L, et al. Corrosion Science, 2016, 110, 123.
28 Song X Q, Wang Y R, Liang J J, et al. Natural Gas and Oil, 2018, 36(6), 92 (in Chinese).
宋晓琴, 王彦然, 梁建军, 等. 天然气与石油, 2018, 36(6), 92.
29 Xu L, Wang B, Zhu J, et al. Applied Surface Science, 2016, 379, 39.
30 Wu L, Yang D, Zhang G, et al. Applied Surface Science, 2018, 431, 177.
31 Shu Y, Yan M C, Wei Y H, et al. Acta Metallurgica Sinica, 2018, 54(10), 1408 (in Chinese).
舒韵, 闫茂成, 魏英华, 等. 金属学报, 2018, 54(10), 1408.
32 Liu B, Mu X, Yang Y, et al. Journal of Materials Science & Technology, 2019, 35(7), 1228.
33 Fahim A, Ghods P, Isgor O B, et al. Materials and Corrosion, 2018, 69(12), 1784.
34 Sun J B, Liu W, Chang W, et al. Acta Metallurgica Sinica, 2009, 45(1), 84 (in Chinese).
孙建波, 柳伟, 常炜, 等. 金属学报, 2009, 45(1), 84.
35 Bai H T, Min Y, Dong X W, et al. Journal of Chinese Society for Corrosion and Protection, 2020, 40(4), 295 (in Chinese).
白海涛, 杨敏, 董小卫, 等. 中国腐蚀与防护学报, 2020, 40(4), 295.
[1] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[2] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[3] 韩秋丽, 安士忠, 宋克兴, 刘海涛, 周延军, 程楚, 张彦敏. 海洋工程用铜镍合金的腐蚀与防护研究进展[J]. 材料导报, 2024, 38(18): 23020095-8.
[4] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[5] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[6] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[7] 姚艺, 任延杰, 彭玉宬, 陈荐, 邱玮, 周立波. 304不锈钢在熔融多硫化钠中的高温腐蚀行为研究[J]. 材料导报, 2023, 37(14): 22010026-5.
[8] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[9] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[10] 吴世杰, 刘丽霞, 彭军, 王晓丽, 焦海东, 霍启男. 珠光体组织对重轨钢U71Mn腐蚀行为的影响[J]. 材料导报, 2021, 35(12): 12147-12155.
[11] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[12] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[13] 王春明, 杨牧南, 黄建辉, 刘位江, 梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[14] 孙 毅,张文鑫,许春香,张金山,韩少兵,贾长健. 铸造镁合金Mg-Zn-Y-Zr-Ca在模拟体液中的腐蚀行为[J]. 《材料导报》期刊社, 2017, 31(24): 105-108.
[15] 李冰洁, 江旭东, 潘春旭. 铜锡青铜合金腐蚀过程中的电化学与微结构特征研究*[J]. 《材料导报》期刊社, 2017, 31(11): 138-143.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed