Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12147-12155    https://doi.org/10.11896/cldb.20010044
  金属与金属基复合材料 |
珠光体组织对重轨钢U71Mn腐蚀行为的影响
吴世杰1, 刘丽霞1,2, 彭军1,2, 王晓丽2, 焦海东1,2, 霍启男3
1 内蒙古科技大学材料与冶金学院,包头 014010
2 内蒙古先进陶瓷与器件重点实验室,包头 014010
3 首钢京唐钢铁联合有限责任公司,唐山 063000
Effect of Pearlite Structure on Corrosion Behavior of U71Mn Heavy Rail Steel
WU Shijie1, LIU Lixia1,2, PENG Jun1,2, WANG Xiaoli2, JIAO Haidong1,2, HUO Qinan3
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology,Baotou 014010, China
2 Inner Mongolia Key Laboratory ofAdvanced Ceramics and Devices, Baotou 014010, China
3 Shougang Jingtang Iron and Steel United Co., Ltd.,Tangshan 063000, China
下载:  全 文 ( PDF ) ( 8463KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过实验室加速腐蚀试验研究了不同珠光体片层间距重轨钢在模拟大气环境中的腐蚀行为,采用场发射电镜、XRD、电化学测试等方法对重轨钢组织和腐蚀结果进行了表征。不同冷却制度下所得实验用U71Mn重轨钢珠光体片层间距为155 nm、241 nm、340 nm、446 nm。随腐蚀时间延长和珠光体片层间距减小,腐蚀失重和腐蚀速率明显下降,珠光体片层间距为155 nm时,腐蚀速率最小,为0.001 4 mg·cm-2·h-1。四种试样锈层中均含有α-FeOOH、 γ-FeOOH、Fe3O4,当珠光体片层间距减小到241 nm以下,α-FeOOH峰值明显增强,腐蚀产物中最先出现少量α-Fe2O3,锈层形貌较为致密。珠光体组织片层间距从446 nm减小到155 nm,形成致密的保护性锈层的时间从240 h提前120 h,内锈层厚度和致密性明显提高,腐蚀480 h后珠光体片层间距最小的实验钢腐蚀电流最小,腐蚀电位最大,抗大气腐蚀性能最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴世杰
刘丽霞
彭军
王晓丽
焦海东
霍启男
关键词:  U71Mn重轨钢  珠光体组织  腐蚀行为  NaHSO3介质  大气腐蚀    
Abstract: The corrosion behaviors of U71Mn heavy rail steel with different perlite lamellar spacing were studied by accelerated corrorsion test in simulated atmopheric environment. The microstructure and corrosion results of heavy rail steel were measured by FESEM, XRD and electrochemical measurement. The pearlite interlaminar spacing of U71Mn heavy rail steel under different cooling way were 155 nm, 241 nm, 340 nm and 446 nm. The corrosion weight loss and corrosion rate decreased significantly with the decrease of pearlite interlaminar spacing. When the pearlite lamellar spacing was 155 nm, the corrosion rate was the lowest, which was 0.001 4 mg·cm-2·h-1. There were α-FeOOH, γ-FeOOH and Fe3O4 in the rust layer of 4 samples. When the pearlite lamellar spacing was less than 241 nm, the peak value of α-FeOOH was obviously enhanced, and a small amount of α-Fe2O3 appeared in the corrosion products, and the rust layer was relatively dense. The formation time of dense rust layer was 120 h earlier than 240 h, and the thickness and compactness of the inner rust layer were obviously improved when the pear-lite lamellar spacing decreased from 446 nm to 155 nm. The corrosion current density was minimun and corrosion potential was maximum when the pearlite interlaminar spacing was 155 nm after 480 hours of corrosion, which had the best resistance to atmospheric corrosion.
Key words:  U71Mn heavy rail steel    pearlite structure    corrosion behavior    NaHSO3 medium    atmospheric corrosion
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51664046;51874186)
通讯作者:  pengjun@imust.cn   
作者简介:  吴世杰,2018—2020年在内蒙古科技大学攻读硕士研究生,目前主要研究内容为重轨钢组织对大气腐蚀的影响。参与项目有高速重轨钢组织对重轨钢抗大气腐蚀性能的影响。
彭军,内蒙古科技大学教授,硕士研究生导师,2009年博士毕业于北京科技大学冶金与生态学院,同年在内蒙古科技大学材料与冶金学院工作至今,主要从事钢中第二相及资源综合利用相关研究工作。在国内外刊物发表学术论文30余篇,SCI检索3篇,EI检索7篇。目前主持项目有稀土铈对钛微合金化钢中钛化物析出行为的影响研究(国家自然科学基金),参与项目有珠光体组织对重轨钢抗大气腐蚀性能的影响(国家自然科学基金)。
引用本文:    
吴世杰, 刘丽霞, 彭军, 王晓丽, 焦海东, 霍启男. 珠光体组织对重轨钢U71Mn腐蚀行为的影响[J]. 材料导报, 2021, 35(12): 12147-12155.
WU Shijie, LIU Lixia, PENG Jun, WANG Xiaoli, JIAO Haidong, HUO Qinan. Effect of Pearlite Structure on Corrosion Behavior of U71Mn Heavy Rail Steel. Materials Reports, 2021, 35(12): 12147-12155.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010044  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12147
1 Liang C F,Hou W T. Journal of Chinese Society for Corrosion and Protection, 1998,18(1),1(in Chinese).
梁彩凤,侯文泰.中国腐蚀与防护学报,1998,18(1),1.
2 Nishikata A, Zhu Q J, Tada E. Corrosion Science,2014,87,80.
3 Wang X L,Song B,An S l, et al. Chinese Journal of Engineering, 2014,36(1),72(in Chinese).
王晓丽,宋波,安胜利,等.工程科学学报,2014,36(1),72.
4 Li S P, Guo J, Yang S W, et al. Journal of Engineering Science, 2008, 30(1),58(in Chinese).
李少坡, 郭佳, 杨善武,等.工程科学学报, 2008, 30(1),58.
5 Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion Science, 2005, 47(4),1021.
6 Mohd Fauzi M A, Saud S N, Hamzah E, et al. Journal of Bio- and Tribo-Corrosion, DOI:10.1007/s40735-019-0230-z.
7 Wu H Y, Du L X, Liu X H. Iron and Steel, 2012,47(10),76(in Chinese).
吴红艳,杜林秀,刘相华.钢铁,2012,47(10),76.
8 Ren A C,Zhu M,Fei J J, et al. China Railway Science, 2014,35(5),7(in Chinese).
任安超,朱 敏,费俊杰,等.中国铁道科学,2014,35(5),7.
9 Clover D, Kinsella B, Pejcic B, et al. Journal of Applied Electrochemistry, 2005,35,139.
10 Sami I, Eman A, Mahdi M. Journal of Applied Electrochemistry,2005,35(2),139.
11 Khoma M S, Rats N B, Holovei S A, et al. Materials Science,2019,54(4),501.
12 Katiyar P K, Misra S, Mondal K. Journal of Materials Engineering and Performance, 2018, 27(4),1753.
13 Staicopolus D N. Journal of the Electrochemical Society, 1963, 110(11),1121.
14 Singh G P, Moon A P, Sengupta S. Journal of Materials Engineering and Performance, 2015, 24(5),196.
15 Pan C, Han W, Wang Z, et al. Journal of Materials Engineering and Performance, 2016, 25(12),5382.
16 Guo T M, Song Z T, Dong J J, et al. Surface Technology, 2018,47(12),187(in Chinese).
郭铁明,宋志涛,董建军,等.表面技术,2018,47(12),187.
17 Morcillo M, Chico B, Díaz I, et al. Corrosion Science,2013,77,6.
18 Almeida E, Morcillo M, Rosales B. Materials & Corrosion, 2015, 51(12),865.
19 Sagoe-Crentsil K K, Glasser F P. Corrosion Science,1993,49,457.
20 Wang Z F, Liu J R, Wu L X, et al. Corrosion Science, 2013, 67,1.
21 Guo M X, Pan C, Wang Z Y, et al. Acta Metallurgica Sinica, 2018,54(1),65(in Chinese).
郭明晓,潘晨,王振尧,等.金属学报,2018,54(1),65.
22 Guo T M, Zhang Y W, Qin J S, et al. Journal of Chinese Society for Corrosion and Protection, 2019,39(4),319(in Chinese).
郭铁明,张延文,秦俊山,等.中国腐蚀与防护学报, 2019,39(4),319.
23 Fuente D l, Daz D, Simancas I, et al. Corrosion Science,2011,53(2),604.
24 Ma Y Ti, Li Y, Wang F H. Corrosion Science, 2009, 51,997.
25 Misawa T, Asami K, Hashimoto K, et al. Corrosion Science,1974,14,279.
26 Ishikawa T, Takeuchi K, Kandori K, et al. Colloids and Surfaces A, 2005, 266,155.
27 Dong J, Dong J H,Han E H, et al. Corrosion Science and Protetion Technology,2006,18(16),414(in Chinese).
董杰,董俊华,韩恩厚,等.腐蚀科学与防护技术,2006,18(16),414.
28 Yang J H,Liu Q Y, Wang X D, et al. Journal of Chinese Society for Corrosion and Protection, 2007,27(6),367(in Chinese).
杨景红,刘清友,王向东,等.中国腐蚀与防护学报,2007,27(6),367.
29 Gong L H, Gong Q, Wang H H. Anti-Corrosion Methods and Materials,2016,63(4),295.
30 Yu Q C,Wang Z Y, Wang C. Acta Metallurgica Sinica, 2010,46(9),1133(in Chinese).
于全成,王振尧,汪 川.金属学报,2010,46(9),1133.
31 Qian Y H, Niu D,Xu J J, et al. Corrosion Science,2013,(71),72.
32 Hao L, Zhang S X, Dong J H, et al. Corrosion Science,2012,54,244.
33 Chen W J, Hao L, Dong J H, et al. Corrosion Science,2014,83,155.
34 Dong J, Dong J H, Han E H, et al. Corrosion Science and Protetion Technology, 2009,21(1),1(in Chinese).
董杰,董俊华, 韩恩厚,等.腐蚀科学与防护技术,2009,21(1),1.
35 Hao L, Zhang S X, Dong J H, et al. Metallurgical and Materials Tran-sactions A,2012,43(5),1724.
36 Evans U R, Taylor C A J. Corrosion Science,1972,12(3),227.
37 Singh, D D,Yadav N, Shyamjeet S,et al. Corrosion Science,2008,50(1),93.
38 Moon A P, Sangal S, Layek S, et al. Metallurgical & Materials Transactions A,2015, 46(4),1500.
[1] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[2] 黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
[3] 曹琛, 郑山锁, 胡卫兵, 张晓辉, 刘毅. 大气环境腐蚀下钢结构力学性能研究综述[J]. 材料导报, 2020, 34(11): 11162-11170.
[4] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[5] 王春明, 杨牧南, 黄建辉, 刘位江, 梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[6] 孙 毅,张文鑫,许春香,张金山,韩少兵,贾长健. 铸造镁合金Mg-Zn-Y-Zr-Ca在模拟体液中的腐蚀行为[J]. 《材料导报》期刊社, 2017, 31(24): 105-108.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed