Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12156-12160    https://doi.org/10.11896/cldb.20040069
  金属与金属基复合材料 |
加热速率和配分时间对低碳Q&P钢组织及性能的影响
左智成, 苏钰, 李军
上海工程技术大学材料工程学院,上海 201620
Effect of Heating Rate and Partitioning Time on Microstructure and Properties of Low Carbon Q&P Steel
ZUO Zhicheng, SU Yu, LI Jun
School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 4394KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 第三代高强度Q&P (淬火配分)钢作为一种新型的热处理钢,其显微组织以马氏体和残余奥氏体为主,因而具有高强度和高延伸率。本工作利用Gleeble热模拟试验机改变加热速率(5 ℃/s、50 ℃/s、300 ℃/s)和配分时间(10 s、60 s)对Q&P钢的组织和性能进行研究。通过扫描电镜(SEM)、电子背散射衍射(EBSD)和X射线衍射(XRD)分别研究了Fe-0.23C-1.55Si-1.92Mn-0.04Al钢的晶粒形貌、尺寸和物相;然后通过Gleeble热模拟试验机对其进行拉伸测试。研究结果表明,提高加热速率可以细化原奥氏体晶粒,进而在二次淬火时获得的二次马氏体尺寸也随之减少;当配分时间为10 s和60 s时,加热速率的提高有利于提高残余奥氏体的含量;当加热速率为300 ℃/s、配分时间为60 s时,试样的强塑积可达37.9 GPa·%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左智成
苏钰
李军
关键词:  Q&P钢  加热速率  淬火配分  强塑积    
Abstract: The third generation of high-strength Q&P (quenching and partitioning) steel,as a new type of heat-treated steel, has high strength and high elongation owning to its martensite and retained austenite microstructure. In this paper, the microstructure and properties of Q&P steel were studied by using Gleeble thermal simulation tester to change the heating rate (5 ℃/s, 50 ℃/s, 300 ℃/s) and partitioning time (10 s, 60 s). The morphology, size, and phase of the Fe-0.23C-1.55Si-1.92Mn-0.04Al steel were studied by scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The tensile test was performed by a Gleeble thermal simulation tester. The results show that, increasing the heating rate helps refine the austenite grains, and the size of the secondary martensite after secondary quen-ching to room temperature also decreases. When the partition time is 10 s and 60 s, the heating rate is beneficial to increase the content of retained austenite. When the heating rate is 300 ℃/s and the partition time is 60 s, the product of strength and elongation of the sample can reach 37.9 GPa·%.
Key words:  Q&P steel    heating rate    quenching and partitioning    product of strength and elongation
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TF01  
基金资助: 国家自然科学基金(051301105;051471105)
通讯作者:  suyu@sues.edu.cn   
作者简介:  左智成,2017年6月毕业于重庆文理学院,获得工学学士学位。2020年6月毕业于上海工程技术大学,获得工程硕士学位。主要研究方向是高强钢微观组织和力学性能。
苏钰,副教授。2012年7月上海大学材料学专业博士研究生毕业,获博士学位。近年来主要从事高强钢成形性能、金属热力学计算的相的研究及超级电容器的研究。在国内外重要期刊发表文章20多篇。
引用本文:    
左智成, 苏钰, 李军. 加热速率和配分时间对低碳Q&P钢组织及性能的影响[J]. 材料导报, 2021, 35(12): 12156-12160.
ZUO Zhicheng, SU Yu, LI Jun. Effect of Heating Rate and Partitioning Time on Microstructure and Properties of Low Carbon Q&P Steel. Materials Reports, 2021, 35(12): 12156-12160.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040069  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12156
1 Isasti N, Badiola D J, Taheri M L, et al. Metallurgical & Materials Transactions A, 2014, 45(11), 4960.
2 Goon P K C, Greenberg D C, Igali L, et al. British Journal of Dermatology, 2017, 176(5), 1351.
3 Landier J, Kajeechiwa L, Thwin M M, et al. Wellcome Open Research, 2017, 2, 81.
4 Na J, Huang Y, Wu X, et al. IEEE Transactions on Control Systems Technology, 2017, 26(6), 2063.
5 Hardwick A P, Outteridge T. The International Journal of Life Cycle Assessment, 2016, 21(11), 1616.
6 Speer J, Matlock D K, Cooman B C D, et al. Acta Materialia, 2003, 51(9), 2611.
7 Toji Y, Miyamoto G, Raabe D. Acta Materialia, 2015, 86, 137.
8 Celada-Casero C, Kwakernaak C, Sietsma J, et al. Materials & Design, 2019, 178, 107847.
9 Valdes-Tabernero M A, Celada-Casero C, Sabirov I, et al. Materials Characterization, 2019, 155, 109822.
10 Deng J, Sun X J, Zhang T, et al. Materials Reports B: Research Papers, 2020, 34(5), 10126 (in Chinese).
邓杰, 孙新军, 张涛, 等. 材料导报:研究篇, 2020, 34(5), 10126.
11 Zhu B, Liu Z, Wang Y, et al. Metallurgical & Materials Transactions A, 2018, 49(4), 1304.
12 Pierce D T, Coughlin D R, Clarke K D, et al. Acta Materialia, 2018, 151, 454.
13 Hetzner D W. Microscopy and Microanalysis, 2003, 9, 710.
14 Xie Z J, Han G, Yu Y S, et al. Materials Characterization, 2019, 153(6), 208.
15 Seo E J, Cho L, Cooman B C D. Metallurgical & Materials Transactions A, 2014, 45(9), 4022.
16 Li Y J, Choi P, Borchers C, et al. Acta Materialia, 2011, 59(10), 3965.
17 Li Y J, Choi P P, Goto S, et al. Acta Materialia, 2012, 60(9), 4005.
18 Xu Z Y, Li X M. Acta Metallurgica Sinica, 1983, 19(2), 7 (in Chinese).
徐祖耀, 李学敏. 金属学报, 1983, 19(2), 7.
19 Arlazarov A, Bouaziz O, Masse J P, et al. Materials Science and Engineering: A, 2015, 620, 293.
20 Xu Z Y, Li X M. Acta Metallurgica Sinica, 1983, 19(6), 505 (in Chinese).
徐祖耀, 李学敏. 金属学报, 1983, 19(6), 505.
21 Edmonds D V, He K, Rizzo F C, et al. Materials Science and Enginee-ring: A, 2006, 438, 25.
22 Zhou L Y, Liu Y Z, Hu X W, et al. Journal of Iron and Steel Research (International), 2011, 18(s1), 792.
23 Jimenez-Melero E, Dijk N H V, Zhao L, et al. Scripta Materialia, 2007, 56(5), 421.
24 Mohanty R R, Girina O A, Fonstein N M. Metallurgical & Materials Transactions A, 2011, 42(12), 3680.
25 Tan X, Xu Y, Yang X, et al. Materials Science and Engineering: A, 2014, 589,101.
[1] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[2] 王运雷,张 杰,龚丽娟. 中间退火及成品退火速率对高压阳极铝箔微观组织的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1612-1617.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed