Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2260-2265    https://doi.org/10.11896/cldb.18040187
  金属与金属基复合材料 |
镁合金表面自纳米化研究进展及现状
王春明,杨牧南,黄建辉,刘位江,梁彤祥
江西理工大学材料科学与工程学院, 赣州 341000
A Review on Surface Self-nanocrystallization of Magnesium Alloys
WANG Chunming, YANG Munan, HUANG Jianhui, LIU Weijiang, LIANG Tongxiang
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 9091KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金作为最轻的工程结构材料在航空航天、交通运输和电子通讯工业等领域均具有广泛的应用。镁合金的耐磨性和耐腐蚀性较差是限制其不能同铝合金一样被广泛应用的两个重要因素。因此,改善镁合金耐磨性和耐腐蚀性具有重大的意义,并受到了研究者的广泛关注。表面处理是提高镁合金耐磨性和耐腐蚀性的有效方法之一,其中,表面自纳米化技术存在以下两大优势:(1)组织沿厚度方向呈梯度变化,不会发生剥层和分离,无需考虑结合问题;(2)利用传统的表面机械处理或进行简单改进就可提高镁合金的耐磨性和耐腐蚀性,使其具有较大的开发应用潜力。目前,常用的镁合金表面自纳米化制备技术有表面机械研磨处理(SMAT)、激光喷丸(LSP)、超声喷丸(USP)、高能喷丸(HESP)、超音速微粒轰击等。
表面机械研磨、高能超丸和超声喷丸技术的基本原理相似,而各自的振动频率不同。振动频率由大至小依次为超声喷丸、高能超丸、表面机械研磨。不同成分的镁合金表面处理后获得的纳米晶粒尺寸最小可达20 nm。另外,通过改进表面机械研磨设备开发的表面机械滚磨技术所得的纳米晶层的厚度可达100 μm。激光喷丸技术表面处理的镁合金纳米层厚度约为20 μm,纳米层晶粒尺寸可达20 nm。此外,经激光喷丸处理后镁合金表面的粗糙度小,使得合金具有更好的耐腐蚀性能。采用超音速微粒轰击技术处理的镁合金表面的纳米层晶粒的尺寸可达10 nm,其纳米层厚度大于使用激光喷丸技术处理的镁合金表面的纳米层。
不论采用何种表面自纳米化技术,镁合金表面结构晶粒尺寸从表面向内部均可分为四个层次:表面纳米晶层、表面细晶层、粗晶应变层和无变化的镁基体。能量是影响纳米晶粒尺寸和纳米晶层的主要因素。同时镁合金表面纳米化后其硬度明显增大,有利于改善材料的摩擦磨损性能。而镁合金的耐腐蚀性能主要受合金晶粒尺寸和第二相颗粒大小、体积分数的影响。在一定的晶粒尺寸范围内,随着镁合金晶粒尺寸细化,合金的耐腐蚀性能增强。在排除镁合金表面粗糙度的影响后,表面纳米化后镁合金的耐腐蚀性能的相关机制尚不明确。特别是纳米晶粒尺寸、第二相粒子的体积分布等对镁合金耐腐蚀性能的影响,还需进一步完善与优化。
本文综述了镁及镁合金表面自纳米化技术(包括表面机械研磨处理、超声喷丸、高能喷丸、激光喷丸、超音速微粒轰击)的制备工艺及特点,主要介绍了国内外镁及镁合金表面自纳米化技术的研究现状,同时还分析了镁合金表面自纳米化制备技术对合金的结构特征、力学和耐腐蚀性能等方面的影响,并探讨了镁合金表面纳米化的应用前景及目前存在的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王春明
杨牧南
黄建辉
刘位江
梁彤祥
关键词:  镁合金  表面自纳米化  力学性能  腐蚀行为    
Abstract: Magnesium (Mg) alloys are the lightest engineering structure materials widely used in aerospace, transportation and electronic communications, etc. The poor wear resistance and corrosion resistance of Mg alloys restrict directly its wide application. Therefore, it is of great significance to improve the wear resistance and corrosion resistance of Mg alloy. Surface treatment is one of the effective methods to improve the wear resistance and corrosion resistance of Mg alloys. Thereinto, surface nanocrystallization has great potential for development and application due to its two advantages: (1) the microstructures present a gradient change along the thickness direction, no peeling and separation are occurred, no interfaces are considered; (2) traditional surface mechanical treatment or simple improvement can be achieved. At present, surface nanocrystallization of Mg alloys used commonly includes surface mechanical attrition treatment (SMAT), laser shot peening (LSP), ultrasonic shot peening (UST), high energy shot peening (HESP), supersonic particle bombardment, etc.
The basic principles of SMAT, HESP, UST are similar, the only difference is the vibration frequency. According to the vibration frequency from big to small, that is, UST, HESP, SMAT. Mg alloys with different composition after surface treatment obtain nanometer grain size as low as 20 nm. In addition, surface mechanical rolling technology (SMRT) is developed by refitting the SMA equipment. The thickness of nanolayer reaches 100 μm by SMRT. For LSP technology, the thickness of nanolayer is about 20 μm, the nanometer grain size reaches 20 nm. Furthermore, LSP has a better advantage in corrosion resistance due to the low surface roughness. The nanoscale grain of Mg alloys can reach up to 10 nm by supersonic particle bombardment technology. Meanwhile, the thickness of nanolayer is higher than that of LSP.
No matter what surface nanocrystallization technology is used, the surface structure layer of Mg alloys can be divided into four layers from the surface to interior: surface nanocrystallization layer, surface fine grain layer, coarse-grained strain layer and α-Mg matrix. The strain energy is the main factor affecting the nanograin size and nanolayer. Meanwhile, the microhardness of Mg alloys increases obviously after surface nanocrystallization, which can improve the friction and wear properties. The corrosion resistance of Mg alloys is mainly affected by the grain size and the particle size and volume fraction of second phases. The corrosion resistance increases with the grain size refinement in a certain grain size range. Except for the effect of surface roughness of Mg alloys, the corrosion mechanism is not clear in Mg alloys after surface nanocrystallization. In particular, the effect of the nanograin size and the particle size and volume fraction of second phases on the corrosion mechanism of Mg alloys should be further improved and optimized.
This paper reviewed the preparation process and characteristics of the surface nanocrystallization technology (surface mechanical attrition treatment, ultrasonic peening treatment, high-energy shot peening, laser shock processing and high velocity oxygen fuel) of Mg alloys. It mainly introduced the research status of the surface nanocrystallization of Mg alloys. Meanwhile, the influence of surface nanocrystallization on the Microstructure, mechanical properties and corrosion behavior of Mg alloys is analyzed. And the application prospect and existing problems to be solved are discussed.
Key words:  Mg alloys    surface self-nanocrystallization    mechanical properties    corrosion behavior
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TG17  
基金资助: 江西理工大学博士启动基金(Jxxjbs17048);江西省教育厅科技计划项目(GJJ170548)
作者简介:  王春明,博士,江西理工大学讲师,2010年6月毕业于四川大学材料科学与工程学院,2017年6月在四川大学材料科学与工程学院取得博士学位。主要研究领域为导热镁合金、镁合金表面纳米化以及氢化钛粉末冶金。近年来,在相关领域发表论文20余篇,包括Materials & Design, International Journal of Hydrogen Energy, Powder Technology, Applied Surface Science, Materials Science and Technology, Materials and Manufacturing Processes等。
梁彤祥,博士,教授,博士生导师,江西理工大学材料学院院长,中国核学会核材料分会理事,中国材料研究学会理事。曾任清华大学核能与新能源技术研究院精细陶瓷研究室主任,精细陶瓷北京重点实验室主任,清华大学新型陶瓷与精细工艺国家重点实验室副主任。主要从事能源环境材料、金属表面纳米化和功能化、第一性原理和分子动力学计算等方面的研究。先后参加主持国家863重点项目,国家科技重大专项,国家自然科学基金重大研究计划等项目。在国内外期刊发表论文150余篇,授权发明专利20余项,编写专著3部。
引用本文:    
王春明, 杨牧南, 黄建辉, 刘位江, 梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
WANG Chunming, YANG Munan, HUANG Jianhui, LIU Weijiang, LIANG Tongxiang. A Review on Surface Self-nanocrystallization of Magnesium Alloys. Materials Reports, 2019, 33(13): 2260-2265.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040187  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2260
1 Mordike B L, Ebert T. Materials Science and Engineering A, 2001, 302(1), 37.2 Chen Z H. Wrought Magnesium Alloy, Chemical Industry Press, China, 2005.陈振华.变形镁合金, 化学工业出版社, 2005.3 Wang C M, Cui Z M, Liu H M, et al.Materials & Design, 2015, 84, 48.4 Yu K, Li W X, Wang R C, et al.The Chinese Journal of Nonferrous Metals, 2003, 13(2), 277 (in Chinese).余琨, 黎文献, 王日初, 等.中国有色金属学报, 2003, 13(2), 277.5 Ding W J, Peng L M, Fu P H, et al. Advanced Materials Industry, 2008, 9(2), 58 (in Chinese).丁文江, 彭立明, 付彭怀, 等.新材料产业, 2008, 9(2), 58.6 Du W B, Liu K, Ma K, et al. Journal of Magnesium and Alloys, 2018, 6, 1.7 Zeng R C, Qi W C, Cui H Z, et al.Corrosion Science, 2015, 96, 23.8 Lin R, Liu C H, Wang F, et al.Surface Technology, 2016, 45(4), 124 (in Chinese).林锐, 刘朝辉, 王飞, 等. 表面技术, 2016, 45(4), 124.9 Yin Z Z, Zeng R C, Cui L Y, et al.Journal of Shandong University of Science and Technology (Natural Science), 2017, 36(2), 58 (in Chinese).殷正正, 曾荣昌, 崔蓝月, 等.山东科技大学学报(自然科学版),2017, 36(2), 58.10 Qian J G, Li D, Guo B L. Materials Protection, 2002, 35(3), 5 (in Chinese).钱建刚, 李荻, 郭宝兰.材料保护, 2002, 35(3), 5.11 Zeng R C, Kainer K U, Blawert C, et al.Journal of Alloys and Compounds, 2011, 509, 4462.12 Zeng R C, Sun L, Zheng Y F, et al. Corrosion Science, 2014, 79, 69.13 Cui L Y, Wu S S, Zeng R C, et al.Surface Technology, 2017, 46(3): 34 (in Chinese).崔蓝月, 吴思思, 曾荣昌, 等. 表面技术, 2017, 46(3): 34.14 Bakkar A, Neubert V. Electrochemistry Communications, 2007, 9(9), 2428.15 Chen X L, Ma Y L, Huang W J, et al. Materials Review A:Review Papers, 2015, 29(4), 107 (in Chinese).陈小丽, 麻彦龙, 黄伟九, 等. 材料导报:综述篇, 2015, 29(4), 107.16 Dube D,Fiset A, Couture A, et al. Materials Science and Engineering A, 2001,299, 38.17 Chiu L H, Chen C C, Yang C F. Surface &Coatings Technology, 2005. 191(2), 181.18 Wang B, Ye H, Yan Z L, et al. Surface Technology, 2010, 39(1), 85 (in Chinese).王宾, 叶宏, 闫忠琳, 等. 表面技术, 2010, 39(1), 85.19 Lu K, Lu J.Journal of Materials Science and Technology, 1999, 15(3), 193.20 Montross C S, Wei T, Ye L, et al. International Journal of Fatigue, 2002, 24(10), 1021.21 Zhu K Y, Vassel A, Brisset F, et al.Acta Materialia, 2004, 52(14), 4101. 22 Ding H, Zhang Z K. Journal of Chongqing University of Technology (Natural Science), 2016, 30(5), 32 (in Chinese).丁华, 张智凯. 重庆理工大学学报(自然科学), 2016, 30(5), 32.23 Malaki M, Ding H.Materials & Design, 2015, 87, 1072.24 Liu G, Lu J, Wang S C.Scripta Materialia, 2001, 44(8-9), 1791.25 Xu K D, Wang A H, Wang Y, et al.Applied Surface Science, 2009, 256, 619.26 Lu K, Lu J.Materials Science and Engineering A, 2004, 375-377, 38.27 Hou L F, Wei Y H, Liu B S, et al.Transactions of Materials and Heat Treatment, 2007, 28(Supplement), 214 (in Chinese).侯利锋, 卫英慧, 刘宝胜, 等. 材料热处理学报, 2007, 28(增刊), 214.28 Sun H Q, Shi Y N, Zhang M X, et al.Acta Materialia, 2007, 55, 975.29 Sun H Q, Shi Y N, Zhang M X.Surface & Coating Technology, 2008, 202, 2859.30 Hou L F, Wei Y H, Liu B S, et al.Rare Metal Materials and Enginee-ring, 2008, 37(3), 530 (in Chinese).侯利锋, 卫英慧, 刘宝胜, 等. 稀有金属材料与工程, 2008, 37(3), 530.31 Wei Y H, Liu B S, Hou L F, et al. Journal of Alloys and Compounds, 2008, 452, 336.32 Laleh M, Kargar F. Journal of Alloys and Compounds, 2011, 509, 9150.33 Kang Y P, Li Y D, Chen T J, et al.China Surface Engineering, 2011, 24(3), 43 (in Chinese).康燕平, 李元东, 陈体军, 等.中国表面工程, 2011, 24(3), 43.34 Han B J, He Q, Yang M. Surface Technology, 2014, 43(8), 32 (in Chinese).韩宝军, 何琼, 杨妙.表面技术, 2014, 43(8), 32.35 Han B J, He Q, Yang M. Surface Technology, 2015, 44(2), 78 (in Chinese).韩宝军, 何琼, 杨妙.表面技术, 2015, 44(2), 78.36 Han B J, Gu D D, He Q, et al. Transactions of Materials and Heat Treatment, 2016, 37(8), 157 (in Chinese).韩宝军, 古东懂, 何琼, 等. 材料热处理学报, 2016, 37(8), 157.37 Liu Y, Jin B, Li D J, et al. Surface & Coatings Technology, 2015, 261, 219.38 Zhang L H, Zou Y, Wang H T, et al.Materials Characterization, 2016, 120, 124.39 Chen B Q, Zhang G F, Zhang L J, et al.International Journal of Advanced Manufacturing Technology, 2018, 94, 2659.40 Liu M G, Sheng G M, Yin L J.Function Materials, 2012, 43(19), 2702 (in Chinese).刘蒙恩, 盛光敏, 尹丽晶.功能材料, 2012, 43(19), 2702.41 Hou L F, Wei Y H, Liu B S.Transactions of Nonferrous Metals Society of China, 2008, 18, 1053.42 Amanov A, Penkov O V, Pyun Y S, et al.Tribology International, 2012, 54, 106.43 Montross C S, Wei T, Ye L. International Journal of Fatigue, 2002, 24, 1021.44 Ge M Z, Xiang J Y, Zhang Y K.Rare Metal Materials and Engineering, 2014, 43(4), 856 (in Chinese).葛茂忠, 项建云, 张永康.稀有金属材料与工程, 2014, 43(4), 856.45 Ge M Z, Xiang J Y.Journal of Alloys and Compounds, 2016, 680, 544.46 Ge M Z, Xiang J Y, Yang L, et al. Surface & Coating Technology, 2017, 310, 157.47 Ge M Z, Xiang J Y, Tang Y, et al. Surface and Coatings Technology, 2018, 337, 501.48 Chen J F, Li X C, Zhou J Y, et al.Chinese Journal of Laser, 2011, 38(12), 1203001 (in Chinese).陈菊芳, 李兴成, 周金宇, 等. 中国激光, 2011, 38(12), 1203001.49 Sealy M P, Guo Y B.Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 488.50 Ren X D, Huang J J, Zhou W F, et al.Materials & Design, 2015, 86, 421.51 Xu K D, Wang A H, Wang Y, et al.Rare Metal Materials and Enginee-ring, 2011, 40(7), 1271 (in Chinese).徐开东, 王爱华, 王洋, 等. 稀有金属材料与工程, 2011, 40(7), 1271.52 Xu K D, Wang A H, Wang Yg, et al.Applied Surface Science, 2009, 256, 619.53 Xu K D, Wang J N, Wang A H, et al.Current Applied Physics, 2011, 11, 677.54 Garcia-Rodriguez S, Lopez A J, Torres B, et al.Surface and Coatings Technology, 2016, 287, 9.55 Pu Z, Yang S, Song G L, et al.Scripta Materialia, 2011, 65, 520.56 Ralston K D, Birbilis N.Corrosion, 2010, 66(7), 075005-13.57 Lu Y, Bradshaw A R, Chiu Y L, et al.Materials Science and Engineering C, 2015, 48, 480.58 Gao Y, Luo C P.Materials of Mechanical Engineering, 2005, 29(1), 40 (in Chinese).高岩, 罗承萍. 机械工程材料, 2005, 29(1), 40.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[10] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[14] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed