Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2266-2271    https://doi.org/10.11896/cldb.18040193
  金属与金属基复合材料 |
多向锻造对铝合金组织与性能影响的研究进展
王云鹏1,胡嘉玮1,许小云1,刘道峰2,蒋洪章2,王晓勇2,颜银标1,3
1 南京理工大学材料科学与工程学院,南京210014
2 黑龙江北方工具有限公司,牡丹江 157013
3 南京速普福金属制品有限公司,南京210014
Research Progress of Effect of Multi-directional Forging on Microstructure and Properties of Aluminum Alloys
WANG Yunpeng1, HU Jiawei1, XU Xiaoyun1, LIU Daofeng2, JIANG Hongzhang2, WANG Xiaoyong2, YAN Yinbiao1,3
1 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210014
2 Heilongjiang North Tool Co. Ltd, Mudanjiang 157013
3 Nanjing Supufu Metal Products Co. Ltd, Nanjing 210014
下载:  全 文 ( PDF ) ( 7615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相比于传统的锻造、挤压等工艺,剧烈塑性变形工艺的应变量较大,在细化晶体组织、强化合金力学性能等方面有更显著的效果,在工业生产中也得到较广泛的应用。而相比于等径角挤压、累积轧制等对所加工材料的尺寸有较大限制的剧烈塑性变形工艺,多向锻造更适用于加工较大体积的块体材料。同时多向锻造具有模具结构简单、加工方法简便、适用性强等特点而区别于其他剧烈塑性变形工艺。近年来,多向锻造在强化铝合金组织与性能方面得到较为广泛的研究。
多向锻造工艺在加工铝合金过程中的影响因素较多,包括初始晶粒度、温度、应变速率、摩擦因数、第二相粒子的尺寸及分布等,可见确定出最佳且系统化的技术参数的难度较大;多向锻造铝合金过程中的晶体组织的细化机制、第二相粒子对金属组织及性能的作用机制较为复杂。近年来,研究者们深入研究了多向锻造过程中金属流动规律及变形组织运动规律等内在因素、温度与应变速率等环境因素对铝合金组织及性能的影响。此外,将有限元模拟技术与剧烈塑性变形工艺相结合也是研究的热点内容,通过有限元数值分析法模拟多向锻造过程可以为实际的研究及试验提供较为可靠的依据。
研究发现,多向锻造过程中的晶体组织细化机制与加工过程中的总应变量有关,随着总应变量增大,影响及促进晶体组织细化的机制不同;采用对三组对称面循环锻压的方法得到的晶体组织更致密、更均匀,这与多向锻造过程中的金属流动有关;第二相粒子对铝合金组织的影响除了与其尺寸及分布相关外还与温度有关,即第二相粒子的状态会随着温度的升高而有所变化,进而对铝合金组织及性能的影响也发生变化。通过多向锻造工艺细化铝合金晶体组织、促进其均匀性增强的同时,铝合金的抗腐蚀性、抗剥落腐蚀及超塑性等性能也得到改善。
本文概述了多向锻造的工艺过程,重点介绍了该工艺在铝合金中的研究现状,分析了多向锻造工艺的晶粒细化机制及其对铝合金显微组织与性能的影响,最后探讨了多向锻造工艺尚存在的问题与未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王云鹏
胡嘉玮
许小云
刘道峰
蒋洪章
王晓勇
颜银标
关键词:  多向锻造  铝合金  晶粒细化  显微组织    
Abstract: Compared with the forging, extrusion and other traditional plastic deformation methods, the strain of the severe plastic deformation(SPD) is large. The SPD has better effects in refining the crystal structure and strengthening the mechanical properties of the alloy, and is widely used in industrial production. And compared with equal channel angular pressing (ECAP), accumulative roll bonding(ARB), and other SPD methods, multi-directional forging(MDF) is more suitable for processing larger bulk materials. MDF has many advantages like its simple mold structure, simple processing and good applicability, which is different from other SPD methods. In recent years, it has been widely researched on the microstructure and properties of aluminum alloys by multi-directional forged (MDFed).
There are many influencing factors in the MDF process of aluminum alloy, including initial grain size, temperature, strain rate, friction factor, size and distribution of second phase particles, etc., so the most suitable and systematic parameters are hard to be determined. The refinement mechanisms of the crystal structure and the influence of the second phase particles on the metal structure and properties are complicated during the process of MDF of aluminum alloy. In recent years, researchers have researched the influence of internal factors such as the metal flow and the motivation of the deformation structure, and the environmental factors such as temperature and strain rate on the microstructure and properties of aluminum alloy during the process of MDF. The combination of finite element method (FEM) and SPD process is a hot topic in recent years. The simulation of MDF by FEM can provide a reliable basis for practical research and experiment.
It is found that the mechanisms of the crystal refinement are related to the strain in the process of MDF. As the strain increases, the mechanisms of affecting and promoting the refinement of the crystal structures are different; the crystal structures obtained by method of forging three sets of symmetry planes in each pass are better, which is related to the metal flow in the MDF process; the influence of the second phase particles on the microstructure of aluminum alloy is related to temperature in addition to its size and distribution, and the state of the second phase particles changes with increasing temperature, and its effect on the microstructure and properties of aluminum alloy also changes. The MDF refines the crystal structures of aluminum alloy and promotes its uniformity, while the properties such as corrosion resistance, flaking corrosion resistance and superplasticity are also improved.
This paper outlines the process of MDF and the research status of the process in aluminum alloy, and analyzes the grain refinement mechanisms of MDF process and its influence on the microstructure and properties of aluminum alloy, finally, discusses the problems still exist in the MDF process and the future research direction.
Key words:  multi-directional forging    aluminum alloy    grain refinement    microstructure
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TG319  
基金资助: 国家部委基金资助项目(C182100C001)
作者简介:  王云鹏,2017年6月毕业于兰州理工大学,获得工学学士学位。现为南京理工大学材料科学与工程学院硕士研究生,目前主要的研究领域为有色金属加工。
颜银标,南京理工大学材料科学与工程学院教授、硕士研究生导师,1992年研究生毕业于西安交通大学材料科学与工程学院。中国模具协会兵器模具委员会专家委员。主要从事先进材料制备与成形技术等方面的研究。获江苏省科技进步二、三等奖各1项、中国冶金技术三等奖1项。发表论文20余篇,主编教材1部,申请发明专利8项,授权发明专利4项,主持国家级科研项目1项、省部级5项、其他11项。
引用本文:    
王云鹏, 胡嘉玮, 许小云, 刘道峰, 蒋洪章, 王晓勇, 颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
WANG Yunpeng, HU Jiawei, XU Xiaoyun, LIU Daofeng, JIANG Hongzhang, WANG Xiaoyong, YAN Yinbiao. Research Progress of Effect of Multi-directional Forging on Microstructure and Properties of Aluminum Alloys. Materials Reports, 2019, 33(13): 2266-2271.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040193  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2266
1 Zhang X M, Deng Y L, Zhang Y. Acta Metallurgica Sinica, 2015, 51(3), 257 (in Chinese).张新明, 邓运来, 张勇. 金属学报, 2015, 51(3), 257.2 Li T. Study on the master alloys prepared by sub-rapidly solidfied techno-logy. Master's Thesis, Xiangtan University, China, 2014 (in Chinese).李涛. 亚快速凝固Al-Ti中间合金组织及其晶粒细化效果研究. 硕士学位论文, 湘潭大学, 2014.3 Kim W J, Chung C S, Ma D S, et al. Scripta Materialia, 2003, 49, 333.4 Pirgazi H, Akbarzadeh A, Petrov R, et al. Material Science and Engineering A, 2008, 497, 132.5 Garcia-Bernal M A, Mishra R S, Silva D H, et al. Journal of Materials Engineering and Performance, 2017, 26, 460.6 Wang M, Huang L, Liu W, et al. Materials Science and Engineering, 2016, 674, 40.7 Lu K, Liu X D, Hu Z Q. Chinese Journal of Materials Research, 1994, 8(5),385 (in Chinese).卢柯, 刘学东, 胡壮麒. 材料研究学报, 1994, 8(5), 385.8 Jia L. Experimental and simulation study on uniaxial compression and multidirectional free forging deformation of 7085 aluminum alloy. Master's Thesis, Central South University, China, 2012 (in Chinese).贾乐. 7085铝合金单向压缩与多向自由锻变形过程实验及仿真研究. 硕士学位论文, 中南大学,2012.9 Xu F, Yan Y B. Titanium Industry Progress, 2012, 29(2), 15 (in Chinese). 徐烽, 颜银标. 钛工业发展, 2012, 29(2), 15.10 Zhang J, Cao F R. Journal of Netshape Forming Engineering, 2016, 8(5), 152 (in Chinese).张坚, 曹富荣. 精密成型工程, 2016, 8(5), 152.11 Miura H, Maruoka T, Jonas J J. Materials Science and Engineering A, 2013, 563,53.12 Doangeh A, Kazeminezhad M, Aashuri H. Intenitional Journal of Cast Metals Research, 2014, 27(5), 311.13 Zhu Q F, Wang J, Zuo Y B, et al. Journal of Northeastern University (Natural Science), 2015, 36(11),1572 (in Chinese). 朱庆丰, 王嘉, 左玉波, 等. 东北大学学报(自然科学版), 2015, 36(11), 1572. 14 Zhao X, Gao Y W, Nan Y, et al. Material Reviews, 2003, 17(12), 5 (in Chinese).赵新, 高聿为, 南云, 等. 材料导报, 2003, 17(12), 5.15 Wei C S. The finite element simulation and investigation of micro-structure of the 6063 aluminum alloy by multi-axial plane compression. Master's Thesis, Inner Mongolia University of Technology, China, 2013 (in Chinese).魏盛春. 变向平面挤压对6063铝合金组织的影响及有限元模拟. 硕士学位论文, 内蒙古工业大学, 2013.16 Guo Q, Yan H G, Chen Z H, et al. Acta Metallurgica Sinica, 2006, 42(7), 739 (in Chinese).郭强, 严红革, 陈振华, 等. 金属学报, 2006, 42(7), 739.17 Zhang D. Effects of heat treatment and multi-direction forging on microstructures and properties of 7A04 aluminum alloy. Master's Thesis, Nanjing University of Science and Technology, China, 2012 (in Chinese).张頔. 热处理多向锻造对7A04铝合金组织与性能的影响. 硕士学位论文, 南京理工大学, 2012.18 Liu D L. Study of microstructure and mechanical Properties of 2A14 aluminum alloy during multi-directional forging. Master's Thesis, Central South University, 2015 (in Chinese).刘东亮. 多向锻造2A14铝合金组织与力学性能研究. 硕士学位论文, 中南大学, 2015.19 Deng P A, Xu X J, Mo J P, et al. Transaction of Materials and Heat Treatment, 2014, 35(9), 111 (in Chinese).邓平安, 许晓静, 莫纪平, 等. 材料热处理学报, 2014, 35(9), 111.20 Zhan D, Shen X P, Li D Q. Nonferrous Matals Engineering, 2016, 6(3), 8 (in Chinese).占栋, 申小平, 李大乔. 有色金属工程, 2016, 6(3), 8.21 Estrin Y, Vinogradov A. Acta Materialia, 2013, 61, 782.22 Fratini L, Buffa G. International Journal of Machine Tools and Manufacture, 2005, 45, 1188.23 Zhu Q F, Li L, Ban Z H, et al. Transaction of Nonferrous Metals Society of China, 2014, 24, 1307.24 Zhu Q F, Wang J, Li L, et al. Material Science Forum, 2017, 877, 371.25 Moghanaki S N, Kazeminezhad M, Loge R, et al. Materials Characterization, 2018, 135, 221.26 Zhao M, Xing Y, Jia Z, et al. Journal of Alloys and Componds, 2016, 686,312.27 Moghanaki S K, Kazeminezhad M, Loge R. Materials Characterization, 2017, 131, 399.28 Liu T, Yang M. Hot Working Technology, 2017, 46(24), 67 (in Chinese).刘涛, 杨梅. 热处理工艺, 2017, 46(24), 67.29 Moghanaki S K, Kazeminezhad M, Loge R. Materials and Design, 2017, 132, 250.30 Aoba T, Kobayashi M, Miura H. Materials Science and Engineering A, 2017, 700, 220.31 Zhang Z X, Yan Y B, Ren H. Nonferrous Metals Engineering, 2017, 7(5), 7(in Chinese).张振兴, 颜银标, 任豪. 有色金属工程, 2017, 7(5), 7.32 Yang D, Chen W L, Wang S Y, et al. Transaction of Materials and Heat Treatment, 2014, 35(2), 209 (in Chinese).杨栋, 陈文琳, 王少阳, 等. 材料热处理学报, 2014, 35(2), 209.33 Huang S P. Study on the multiple forging process and microstructure evolution of 6061aluminum alloy. Master's Thesis, Guangxi University, China, 2017 (in Chinese).黄世鹏. 6061铝合金多向锻造过程和微观组织的演变研究. 硕士学位论文, 广西大学, 2017.34 Li D Q, Yan Y B, Zhang D. Nonferrous Metals Engineering, 2014, 4(4), 26 (in Chinese).李大乔, 颜银标, 张頔. 有色金属工程, 2014, 4(4), 26.35 Chen J D, Yan Y B, Shen X P, et al. Nonferrous Metals Engineering, 2016, 6(5), 1 (in Chinese). 陈俊东, 颜银标, 申小平, 等. 有色金属工程, 2016, 6(5), 1.36 Bailey J E, Hirsch P B. Philosophical Magazine, 1960, 5, 485.37 Shen J. Numerical simulation and the effect of multi-directional extrusion on microstruture and mechanical properties of AZ80 magnesium alloy. Master's Thesis, Nanjing University of Science and Technology, China, 2015 (in Chinese).沈骏. AZ80多向挤压的热模拟及其组织性能影响研究. 硕士学位论文, 南京理工大学, 2015.38 Kavosi J, Saei M, Kazeminezhad M, et al. Computional Materials Science, 2014, 81, 284.39 Dolega L, Cieslak B A, Mizera Z, et al. Journal of Materials Science, 2012, 47(7), 3026.40 Gui X H, Ye L Y, Sun D X, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(12), 2995 (in Chinese).贵星卉, 叶凌英, 孙大翔, 等. 中国有色金属学报, 2014, 24(12), 2995. 41 Wu Y, Xu X J, Zhang Z Q, et al. Chinese Journal of Rare Metals, 2014, 38(6), 961 (in Chinese).吴瑶, 许晓静, 张振强, 等. 稀有金属, 2014, 38(6), 961.42 Chen L, Pan L F, Yan W L, et al. Hot Working Technology, 2016, 45(7), 40 (in Chinese).陈林, 潘丽飞, 严伟林, 等. 热处理工艺, 2016, 45(7), 40.43 Liang X, Chen K H, Chen X H, et al. Journal of Central South University (Science and Technology), 2012, 43(3), 900 (in Chinese).梁信, 陈康华, 陈学海, 等. 中南大学学报(自然科学版), 2012, 43(3), 900. 44 Jandaghi M R, Pouraliakbar H, Khalaj G, et al. Materials Science and Engineering A, 2016, 657, 431.45 Hu G X, Cai X, Rong Y H.Fundermentals of materials Science, Profile of Shanghai Jiao Tong University Press, China, 2006(in Chinese). 胡赓祥, 蔡珣, 戎咏华. 材料科学基础, 上海交通大学出版社, 2006.46 Dang P, Xu X C, Liu Z Y, et al. Material Reviews, 2007, 21(4), 60 (in Chinese).党朋, 许晓嫦, 刘志义, 等. 材料导报, 2007, 21(4), 60.47 Bi B P, Wang Y, Sun M Y. Journal of Plastic Engineering, 2015, 22(2), 62 (in Chinese).毕宝鹏, 王勇, 孙梦莹. 塑性工程学报, 2015, 22(2),62.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[4] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[5] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[6] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[7] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[8] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[9] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[10] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[11] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[12] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[13] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[14] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[15] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed