Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20110005-7    https://doi.org/10.11896/cldb.20110005
  无机非金属及其复合材料 |
改性珊瑚骨料混凝土中钢筋的腐蚀行为
张路1,2, 牛荻涛1,2, 文波1,2, 张永利1,2, 陈昊1
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学省部共建西部绿色建筑国家重点实验室,西安 710055
Corrosion Behavior of Steel Bars in Modified Coral Aggregate Concrete
ZHANG Lu1,2, NIU Ditao1,2, WEN Bo1,2, ZHANG Yongli1,2, CHEN Hao1
1 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 12067KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作比较了由珊瑚骨料和不同的掺合料制成的钢筋混凝土构件在海洋环境中的耐久性。基于线性极化法和交流阻抗谱法,分析了改性珊瑚骨料混凝土中钢筋的腐蚀行为。研究结论如下:(1)采用线性极化法和交流阻抗谱法测试了改性珊瑚骨料混凝土中钢筋的动电位极化曲线、容抗弧曲线和阻抗模量曲线,定量分析了电化学参数对钢筋腐蚀的影响规律。(2)提出了掺合料珊瑚骨料混凝土耐久性能系数,用以表征钢筋在粉煤灰、硅灰和矿渣珊瑚骨料混凝土中的抗钢筋锈蚀性能提高值。10%硅灰掺量的珊瑚骨料混凝土的抗钢筋锈蚀性能提高了87.0%,20%矿渣掺量的珊瑚骨料混凝土的抗钢筋锈蚀性能提高了68.73%,20%粉煤灰掺量的珊瑚骨料混凝土的抗钢筋锈蚀性能提高了50.15%。(3)建立了掺合料用量和钢筋腐蚀电流密度的回归分析函数,并且得出掺合料对珊瑚骨料混凝土中钢筋锈蚀速率的修正系数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张路
牛荻涛
文波
张永利
陈昊
关键词:  珊瑚骨料混凝土  掺合料  腐蚀行为  电化学测试  锈蚀速率    
Abstract: The durability of reinforced concrete components made from coral aggregate and different admixtures in marine environment were compared. The corrosion behavior of reinforcement in modified coral aggregate concrete (MCAC) was analyzed by electrochemical measurement. The research conclusions are as follows: (Ⅰ) the dynamic potential polarization, capacitance-reactance and impedance modulus curves of steel bars in MCAC were tested by linear polarization and electrochemical impedance spectrum, and the influence of electrochemical parameters on steel bars corrosion was quantitatively analyzed. (Ⅱ) The durability coefficient of MCAC was proposed to represent the improved corrosion resistance value of steel bars in MCAC with FA, SF and GGBS. Compared to the MCAC without admixtures, the chloride resistance of the MCAC containing 10% SF, 20% GGBS, and 20% FA increased by 87.0%, 68.73%, and 50.15%, respectively. (Ⅲ) The regression analysis function of admixtures and corrosion rate of steel bars in MCAC was established, and the correction coefficient of admixtures to the corrosion rate of steel bars in MCAC was obtained.
Key words:  coral aggregate concrete    admixtures    corrosion behavior    electrochemical test    corrosion rate
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TU502+.5  
基金资助: 国家自然科学基金重大项目支课题(51590914);国家自然科学基金项目(52078413;52078415) ;陕西省教育厅科研计划项目(18JS062)
通讯作者:  niuditao@163.com   
作者简介:  张路,2021年12月毕业于西安建筑科技大学, 获得工学博士学位,主要从事新型钢筋混凝土材料领域的研究。在国内外重要期刊发表文章20多篇,申报发明专利3项。
牛荻涛,西安建筑科技大学教授。1991年9月毕业于哈尔滨工业大学,获得工学博士学位。同年加入西安建筑科技大学工作至今,主要从事混凝土结构耐久性的研究。在国内外重要期刊发表文章300余篇,申报发明专利50余项。
引用本文:    
张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
ZHANG Lu, NIU Ditao, WEN Bo, ZHANG Yongli, CHEN Hao. Corrosion Behavior of Steel Bars in Modified Coral Aggregate Concrete. Materials Reports, 2022, 36(6): 20110005-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110005  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20110005
1 Liu J, Ou Z. Arabian Journal for Science and Engineering. 2017, 43(4),1529.
2 Lyu B, Wang A, Zhang Z, et al. Cement and Concrete Composites, 2019, 100, 25.
3 Wang Y, Shui Z, Gao X, et al. Journal of Cleaner Production, 2019, 219 (10),763.
4 Shui Z, Sun T, Cheng S. Applied Clay Science, 2017, 141,111.
5 Wu Z, Yu H, Ma H, et al. Corrosion Science, 2020, 163,108238.
6 Chen C, Ji T, Zhuang Y. Construction and Building Materials, 2015, 98, 227.
7 Da B, Yu H, Ma H. Construction and Building Materials, 2016, 123, 47.
8 Niu D, Zhang L, Fu Q, et al. Construction and Building Materials, 2020, 238,117685.
9 Zhang L, Niu D, Wen B, et al. Construction and Building Materials, 2020, 258,119564.
10 Otieno B, Beushausen D, Alexander G. Cement & Concrete Composites, 2011,33(2), 240.
11 Otieno B, Beushausen D, Alexander G. Materials & Corrosion, 2015,63(9),777.
12 Pour M. Corrosion Science, 2009, 51, 426.
13 Valipour M, Shejarchi M, Ghods P. Cement and Concrete Composites, 2014, 48, 98.
14 Hussain R R. NDT & E International, 2011, 44(2), 158.
15 Yuan Y. Modeling, Identification and Control, 2009,7(2), 155.
16 Shamsad A. Anti-Corrosion Methods and Materials, 2014, 61(3), 158.
17 Cheng S, Shui Z, Sun T, et al. Construction and building Materials, 2018, 171 (20), 44.
18 Sun B L. Low Temperature Architecture Technology, 2014(8), 12 (in Chinese).
孙宝来. 低温建筑技术,2014(8), 12.
19 Wu W, Wang R, Zhu C, et al. Construction and Building Materials 2018,185 (10), 69.
20 Abreu C, Cristobal M, Losada R. Electrochim Acta, 2006, 51(8),1881.
21 Feng X, Tang Y, Zuo Y. Corrosion Science, 2011,53(4), 1304.
22 Da B, Yu H, Ma H, Wu Z. Journal of Testing and Evaluation, 2020, 2, 1537.
23 Zhao T J, Zhou Z H, Liu J C. Concrete, 2000(2), 12. (in Chinese)
赵铁军,周宗辉,刘君昌.混凝土,2000(2),12.
[1] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[2] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[3] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[4] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[5] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[6] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[7] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 23068-23075.
[8] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[9] 柴源, 牛勇, 李文杰, 吕海波. 珊瑚骨料混凝土改性技术研究进展[J]. 材料导报, 2021, 35(15): 15134-15142.
[10] 吴世杰, 刘丽霞, 彭军, 王晓丽, 焦海东, 霍启男. 珠光体组织对重轨钢U71Mn腐蚀行为的影响[J]. 材料导报, 2021, 35(12): 12147-12155.
[11] 郑少军, 刘天乐, 蒋国盛, 李丽霞, 白世卿, 余尹飞, 全奇. 基于HYMOSTRUC3D的水泥基材料微结构变化规律研究[J]. 材料导报, 2020, 34(22): 22047-22053.
[12] 张倩倩, 刘建忠, 张丽辉, 刘加平. 矿物掺合料对低水胶比浆体流变性能的影响机制研究[J]. 材料导报, 2020, 34(22): 22054-22057.
[13] 胡明玉, 王红英, 刘子航, 胡裕倩. 抑霉菌泥炭藓/硅藻土复合调湿材料的研究[J]. 材料导报, 2020, 34(14): 14051-14056.
[14] 陈建锋, 王方明, 钟史放, 胡明金, 张江涛, 王凯冬, 李小兵. 多巴胺表面改性CNTs制备微纳双重结构的Ni/CNTs@pDA超疏水复合镀层[J]. 材料导报, 2019, 33(Z2): 568-572.
[15] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed