Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15134-15142    https://doi.org/10.11896/cldb.19100116
  无机非金属及其复合材料 |
珊瑚骨料混凝土改性技术研究进展
柴源1, 牛勇2, 李文杰2, 吕海波2,3
1 广西大学土木建筑工程学院,南宁 530000
2 桂林理工大学土木与建筑工程学院,桂林 541000
3 贺州学院建筑与电气工程学院,贺州 542800
Research Progress on Improved Technology of Coral Aggregate Concrete
CHAI Yuan1, NIU Yong2, LI Wenjie2, LYU Haibo2,3
1 College of Civil Engineering and Architecture, Guangxi University, Nanning 530000, China
2 College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541000, China
3 College of Architecture and Electrical Engineering, Hezhou University, Hezhou 542800, China
下载:  全 文 ( PDF ) ( 8484KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着海洋资源的开发和建设,利用珊瑚骨料制备混凝土已在岛礁工程中得到广泛应用。最近的几年内,有关珊瑚骨料混凝土的基本特性、力学性能和耐久性的研究已取得一定的成果,同时制备工艺也在不断优化。但由于珊瑚骨料特殊的生物成因,其通常疏松多孔、表面粗糙、形状不规则、附着多种盐离子,这些特性会影响混凝土的工作性能。因此,研究者们主要针对优化珊瑚骨料混凝土性能进行不断的尝试,发现了多种珊瑚骨料混凝土改性技术。
珊瑚混凝土虽然很早就投入生产使用,但是珊瑚集料在混凝土制备过程中表现出一些缺陷:如颗粒强度不如石英砂,导致制备的混凝土强度等级低,不能满足更高的工程要求;渗透性高、孔隙多的特性导致珊瑚混凝土抗渗能力低于普通混凝土,内部钢筋受腐蚀速度快,耐久性不佳,同时也对骨料与钢筋结合能力方面造成了影响。国内外对珊瑚混凝土的改性技术研究也主要围绕这几方面展开。
目前已经有多种技术对珊瑚混凝土改性成功。在提升混凝土力学性能方面:掺入纤维制品、矿物成分和外加剂;使用酸溶液或有机溶液处理珊瑚骨料改善骨料特性;优化珊瑚混凝土配合比,可以有效提升珊瑚混凝土的力学强度。在改善混凝土抗渗能力和耐腐蚀性方面:采用特种筋替代碳钢钢筋;加入阻锈剂和采用传统抗Cl-腐蚀措施;使用地质聚合物水泥;对珊瑚骨料进行淡化处理,都是有效的耐腐蚀方法。
文中基于国内外已有的珊瑚骨料混凝土研究成果,综述了其改性技术的研究进展,分别对提高珊瑚混凝土的强度、增强钢筋结合能力和提升耐久性方面进行介绍,最后探讨了今后珊瑚骨料混凝土的研究方向,以便为后续研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴源
牛勇
李文杰
吕海波
关键词:  珊瑚骨料混凝土  力学性能  耐久性能  增强性能    
Abstract: With the development and construction of marine resources, coral aggregate concrete has been widely used on islets and reefs. In recent years, some research results of the basic properties, mechanical properties, and durability of coral aggregate concrete have been obtained. Meanwhile, the preparation technology of coral aggregate concrete has also been continuously optimized. However, because of its unique biological origin, coral sands are usually loose, rough, and irregular in shape, has multiple holes, and are bonded with a variety of salt ions. These characteristics will affect the engineering performance of coral aggregate concrete. Therefore, the researchers mainly tried to optimize the performance of coral aggregate concrete and proposed a variety of improved technologies for coral aggregate concrete.
Although coral aggregate concrete has been in production for a long time, its preparation process has some flaws. For example, the strength of the particles of coral sands is not as good as that of quartz sands, which results in low strength of coral aggregate concrete. Thus, coral aggregate concrete cannot meet stringent engineering requirements. Moreover, high permeability and porosity cause the anti-permeability of coral aggregate concrete to be lower than that of ordinary concrete, which leads to the rapid corrosion and poor durability of internal rebar, affecting the binding ability of the aggregate and reinforcement. Research on the improvement of coral aggregate concrete also focuses on these aspects at home and abroad.
At present, a series of technologies have successfully improved the properties of coral aggregate concrete. In terms of the mechanical properties of coral aggregate concrete, adding fiber, mineral components, and additives, treating coral aggregate with an acid or organic solution, and optimizing the mixing ratio can effectively enhance the strength of coral aggregate concrete. In terms of improving the anti-permeability and corrosion resistance of coral aggregate concrete, using special reinforcement instead of carbon steel, adding rust inhibitor, adopting traditional anti-chlorine corrosion measures, using geopolymer cement, and desalination of coral aggregate are effective methods of enhancing corrosion resis-tance.
On the basis of current research results of coral aggregate concrete at home and abroad, this paper reviews the research progress of its improved technologies. The improvement of the strength of concrete and bonding ability and durability of reinforcement are considered. Then, the future research direction of coral aggregate concrete is discussed to provide a reference for subsequent researchers.
Key words:  coral aggregate concrete    mechanical properties    durability properties    enhancement properties
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51169005;41272358);广西自然科学基金重点项目(2018JJD160019);广西硕士研究生创新项目(YCSW2019161)
作者简介:  柴源,1989年生,现为广西大学博士研究生,在吕海波教授的指导下进行研究。目前主要研究领域为钙质砂与基础工程。
吕海波,桂林理工大学土木与建筑工程学院教授,博士研究生导师,享受国务院政府特殊津贴。2002年7月毕业于中国科学院武汉岩土力学研究所,获工学博士学位。2013年3月到美国俄克拉荷马州立大学访问研修。国际土力学与岩土工程学会会员(ISSMGE)、中国力学学会岩土力学专业委员会委员、中国土木工程学会非饱和土与特殊土专业委员会委员、中国岩石力学与工程学会地下工程分会理事。主要研究方向为特殊性岩土的工程特性及应用、非饱和土力学、土的微观结构及变形机理、混凝土损伤及测试、钙质砂工程力学性能等。
引用本文:    
柴源, 牛勇, 李文杰, 吕海波. 珊瑚骨料混凝土改性技术研究进展[J]. 材料导报, 2021, 35(15): 15134-15142.
CHAI Yuan, NIU Yong, LI Wenjie, LYU Haibo. Research Progress on Improved Technology of Coral Aggregate Concrete. Materials Reports, 2021, 35(15): 15134-15142.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100116  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15134
1 Pham Huu Ha Giang, Peter Omer Van Impe, William F Van Impe, et al. Soil Dynamics and Earthquake Engineering,2017,100,371.
2 Messaouda Cherrak, Abderrahim Bali, Kamel Silhadi. Construction and Building Materials,2013,47,318.
3 Rick A E. Concrete International,1991,13(1),19.
4 Yuan Y F. Mix design and property of coral aggregate concrete. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China,2015(in Chinese).
袁银峰.全珊瑚海水混凝土的配合比设计和基本性能.硕士学位论文,南京航空航天大学,2015.
5 Dempsey G. ACI Materials Journal,1951,23,157.
6 Narver D L. Civil Engineering,1964,24,654.
7 Ma L J, li Z, Chen X X, et al. Acta Metallurgica Sinica,2018,37(8),2471(in Chinese).
马林建,李增,陈欣星,等.硅酸盐通报,2018,37(8),2471.
8 Yu K F, Zhao J X, Collerson K D, et al. Palaeogeography, Palaeoclimatology, Palaeoecology,2004,210,89.
9 Head W J, Phillippi H M, Howdyshell P A, et al. Cement, Concrete and Aggregates,1983,5(2),88.
10 Shahnazari H, Rezvani R. Engineering Geology,2013,159(9),98.
11 Su L,Niu D T, Luo D M. Materials Review A: Review Papers,2008,32(10),3387(in Chinese).
苏丽,牛荻涛,罗大明.材料导报:综述篇,2018,32(10),3387.
12 Wang X, Yu R, Shui Z, et al. Journal of Cleaner Production,2017,165,70.
13 Coop M R, Sorensen K K, Bodas Freitas T. Geotechnique,2004,54(3),157.
14 Xiao P, Liu H, Xiao Y, et al. Soil Dynamics & Earthquake Engineering,2018,107,9.
15 Wang X Z, Jiao Y Y, Wang R, et al. Engineering Geology,2011,120(1-4),40.
16 Wang X Z, Wang X, Jin Z C, et al. Ocean Engineering,2017,134,77.
17 Wang L, Zhao Y L, Lv H B. Concrete,2012(2),99(in Chinese).
王磊,赵艳林,吕海波.混凝土,2012(2),99.
18 Xu Weiying, Yang Shutong, Xu Chengji, et al. Construction and Buil-ding Materials,2019,223,91.
19 Wang Aiguo, Lyu Bangcheng, Zhang Zuhua, et al. Construction and Building Materials,2018,187,1004.
20 Vallejo E S. Dyna,2012,79,32.
21 Ma Linjian,Li Zeng, Liu Jiagui, et al. Construction and Building Mate-rials,2019,199,244.
22 Zhang J M, Guo S J. Current Zoology,2009,55(1),20.
23 Da Bo, Yu Hongfa, Ma Haiyan, et al. Construction and Building Mate-rials,2016,122,81.
24 Zhou J. Experimental study on preparation technology and physical mechanical properties of coral concrete. Master’s Thesis, Hohai University, China,2015(in Chinese).
周杰.珊瑚骨料混凝土制备技术与物理力学性能试验研究.硕士学位论文,河海大学,2015.
25 Wang Xinpeng, Yu Rui, Shui Zhonghe, et al. Journal of Cleaner Production,2017,165,70.
26 Xiao Yu, Li Chen, Qin Fang, et al. International Journal of Impact Engineering,2019,125,63.
27 Kakooei S, Akil H M, Jamshidi M, et al. Construction and Building Materials,2012,27(1),73.
28 Wang L, Mao Y, Lv H, et al. Construction and Building Materials,2018,162,442.
29 Zhang T, Niu D, Rong C. Construction and Building Materials,2019,218,206.
30 Wang L, Liu C P, Xiong Z J. Journal of Henan Polytechnic University(Natural Science),2014,33(6),826(in Chinese).
王磊,刘存鹏,熊祖菁.河南理工大学学报(自然科学版),2014,33(6),826.
31 Liu C P, Liu C X, Deng X L. Low Temperature Architecture Technology,2016,38(4),7(in Chinese).
刘存鹏,刘存翔,邓雪莲,等.低温建筑技术,2016,38(4),7.
32 Wang X, Zhang X F,Ding L N,et al. Construction and Building Mate-rials,2020,231,117113.
33 Wang L, Deng X L, Wang G X. Concrete,2014(8),88(in Chinese).
王磊,邓雪莲,王国旭.混凝土,2014(8),88.
34 Yap S P, Bu C H, Alengaram U J, et al. Materials & Design,2014,57,652.
35 Yi J, Liu C, Wang L. Science Technology and Engineering,2019,19(4),244(in Chinese).
易金,刘超,王磊.科学技术与工程,2019,19(4),244.
36 Wang L, Gu W H, Wang R, et al. Bulletin of the Chinese Ceramic Society,2019,38(10),3339(in Chinese).
王磊,谷文慧,汪稔.硅酸盐通报,2019,38(10),3339.
37 Mrema A L. In: 6th International Conference on Structural Engineering, Mechanics and Computation. Cape Town,2016,pp. 1380.
38 Zhu S Y, Shui Z H, Yu R, et al. Bulletin of the Chinese Ceramic Society,2017,36(12),3951(in Chinese).
朱寿永,水中和,余睿,等.硅酸盐通报,2017,36(12),3951.
39 Sun B L. Low Temperature Architecture Technology,2014,36(8),12(in Chinese).
孙宝来.低温建筑技术,2014,36(8),12.
40 Peng Z Q,Peng S,Li D, et al. Journal of Wuhan University of Technology,2016,38(11),92(in Chinese).
彭自强,彭胜,李达,等.武汉理工大学学报,2016,38(11),92.
41 Chen Z L,Tang X N, Sun G F, et al. Ocean Engineering,2008,26(4),102.
42 Cheng S K,Shui Z H, Sun T, et al. Applied Clay Science,2017,141,111.
43 Pandurangan K, Dayanithy A, Prakash S O. Construction and Building Materials,2016,120,212.
44 Wang L, Wang J, Qian X, et al. Construction and Building Materials,2017,144,432.
45 Yodsudjai W, Otsuki N, Nishida T, et al. In: Fourth Regional Sympo-sium on Infrastructure Development in Civil Engineering. Thailand,2003,pp. 2.
46 Yang J J, Dong Y L,Hai R, et al. China Concrete and Cement Products,2003(6),1(in Chinese).
杨久俊,董延玲,海然,等.混凝土与水泥制品,2003(6),1.
47 Guo T, Ou Z W, Tang J W, et al. Contemporary Chemical Industry,2017,46(11),2213(in Chinese).
郭曈,欧忠文,唐军务,等.当代化工,2017,46(11),2213.
48 姚燕,王振地,王玲,等.中国专利,CN 201610079268,2016.
49 Xu W, Yang S, Xu C, et al. Construction and Building Materials,2019,223,91.
50 Arumugam R A, Ramamurthy K. Magazine of Concrete Research,1996,48(176),141.
51 You W G, Xu Y D,Zou Y S, et al. Journal of Functional Materials,2019,50(5),70(in Chinese).
游伟国,徐亦冬,邹毅松,等.功能材料,2019,50(5),70.
52 Wang X, Yu R, Shui Z, et al. Journal of Cleaner Production,2017,165,70.
53 Chen Z L, Tang X N, Sun G F, et al. The Ocean Engineering,2008,26(4),102(in Chinese).
陈兆林,唐筱宁,孙国峰,等.海洋工程,2008,26(4),102.
54 Li Z X, Wei Z B, Shen J L. Concrete,2016,7(321),1(in Chinese).
李仲欣,韦灼彬,沈锦林.混凝土,2016,7(321),1.
55 Shen J L. Engineering and Foundation,2016,30(4),524(in Chinese).
沈锦林.土工基础,2016,30(4),524.
56 Huang Y J, He X J, Sun H S, et al. Construction and Building Mate-rials,2018,198,330.
57 Alduaij J, Alshaleh K, Haque M N, et al. Cement & Concrete Compo-sites,1999,21(5-6),453.
58 Neela D, Shreenivas L, Sushma K. Smart and Sustainable Built Environment,2014,3,187.
59 Faezehossadat K, Sayed M, Neela D, et al. Smart and Sustainable Built Environment,2016,5,355.
60 Xiao J Z, Qiang C B, Antonio N, et al. Construction and Building Materials,2017,155,1101.
61 Wu C Y, Yu J M, Dong J, et al. Materials and Structures,2014,111,291.
62 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research,2002,32,211.
63 Wu Wenjuan, Wang Ren, Zhu Changqi, et al. Construction and Building Materials,2018,185,69.
64 Yang Shutong, Yang Chao, Huang Meilin. Construction and Building Materials,2018,173,272.
65 Hu Q, Yang T, Wang Z Z, et al. Construction Economy,2016,37(1),61(in Chinese).
胡乔,阳涛,王壮志,等.建筑经济,2016,37(1),61.
66 Li W. Experimental study on the bonding properties of CFRP bars and GFRP bars to coral concrete immersed in sea water. Master’s Thesis, Guilin University of Technology, China,2018(in Chinese).
李威.CFRP筋,GFRP筋-珊瑚混凝土在海水浸泡条件下的粘结性能试验研究.硕士学位论文,桂林理工大学,2018.
67 Wang L, Chen W, Duan Z G, et al. Railway Engineering,2018,58(8),19(in Chinese).
王磊,陈武,段志刚,等.铁道建筑,2018,58(8),19.
68 Wang L, Mao Y D, Chen S, et al. Journal of Building Materials,2018,21(2),286(in Chinese).
王磊,毛亚东,陈爽,等.建筑材料学报,2018,21(2),286.
69 Yang C, Yang S T, Qi D H. Engineering Mechanics,2018,(A01),172(in Chinese).
杨超,杨树桐,戚德海.工程力学,2018,(A01),172.
70 Wang X, Zhang X F, Ding L N, et al. Construction and Building Mate-rials,2020,231,117113.
71 Li B, Hou M Y, Yang Y X, et al. Industrial Construction,2016,46(11),181(in Chinese).
李彪,侯慕轶,杨勇新,等.工业建筑,2016,46(11),181.
72 Wang F, Zha X X. Journal of Building Structures,2013,34(S1),288(in Chinese).
王芳,查晓雄.建筑结构学报,2013,34(S1),288.
73 Zhang S F, Chen X F, Li L, et al. Applied Mechanics & Materials,2014,638,1369.
74 Ahmad S. Cement and Concrete Composites,2003,25(4),459.
75 Yi M Y, Fang C Q, Wang Y L, et al. Low Temperature Architecture Technology,2008,8(1),51.
易美英,方从启,王艺霖,等.低温建筑技术,2008,8(1),51(in Chinese).
76 He H Z, Liu J, Yang S J, et al. China Concrete and Cement Products,2000,4(3),7.
贺鸿珠,刘军,杨胜杰,等.混凝土与水泥制品,2000,4(3),7(in Chinese).
77 Feng X G, Shi R L, Xu Y, et al. The 18th Annual China Ocean (Shore) Engineering Academic Seminar. Zhoushan,2017,pp. 736(in Chinese).
冯兴国,石锐龙,徐逸,等.第十八届中国海洋(岸)工程学术讨论会.舟山,2017,pp. 736.
78 Delagrave A, Bigas J P, Ollivier J P, et al. Advanced Cement Based Materials,1997,5(3),86
79 Nielsen W K. Desalination,1983,46(1),67.
80 Fu Y, Cai L, Wu Y. Construction and Building Materials,2011,25(7),3144.
81 Ghasan F H, Jahangir M, Mohammad I, et al. Renewable Suitable Energy,2017,80,54.
82 Mao J H, Jin W L, Zhang H, et al. Journal of Chinese Society for Corrosion and Protection,2015(6),563.
毛江鸿,金伟良,张华,等.中国腐蚀与防护学报,2015(6),563.
83 Wei Z B, Li Z X. Journal of Logistical Engineering University,2017,33(3),1(in Chinese).
韦灼彬,李仲欣.后勤工程学院学报,2017,33(3),1.
84 Kwon S J, Lee H S, Karthick S, et al. Construction and Building Mate-rials,2017,154,349.
85 Pacheco-Torgal F, Ding Y, Jalali S. Construction and Building Materials,2012,30,714.
86 Regin J J, Vincent P, Ganapathy C. Arabian Journal for Science and Engineering,2017,42(3),957.
87 Tang J, Cheng H, Zhang Q, et al. Construction & Building Materials, 2018, doi:10.1016/j. conbuildmat.2018.01.085.
88 Li Y T, Zhou L, Zhang Y, et al. Advanced Materials Research,2013,706,512.
89 Lu B, Liang Y B. Marine Science Bulletin,1993,12(5),69(in Chinese).
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[5] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[6] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[7] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[8] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[9] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[10] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[11] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[12] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[13] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[14] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[15] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed