Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20100297-5    https://doi.org/10.11896/cldb.20100297
  高分子与聚合物基复合材料 |
一种热熔法制备预浸纱的展开宽度控制方法
李新帅, 文立伟, 邓朱海, 崔浩南
南京航空航天大学材料科学与技术学院,南京 210016
A Method to Control the Spreading Width of Prepreg in Hot-melt Process
LI Xinshuai, WEN Liwei, DENG Zhuhai, CUI Haonan
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 2330KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热熔法因其相对简单的工艺过程成为工业制备预浸纱的重要方法,如何控制纤维束的展开宽度以及宽度的稳定是热熔法工艺的重难点。本工作基于机器视觉检测技术搭建实验平台,探究纤维张力、纤维牵引速度、树脂粘度和胶膜厚度四个工艺变量对纤维束展开宽度和展宽稳定性的影响,建立了理论模型并进行了正交试验。结果发现:针对该试验平台,随着纤维张力、纤维运行速度、树脂粘度和胶膜厚度的增加,纤维束的展开宽度有增加的趋势。实验结果与理论模型一致,胶膜厚度对纤维束的展开宽度影响最大,其次是树脂粘度,最后是纤维张力和纤维牵引速度。纤维牵引速度对纤维束展宽稳定性影响最大,纤维牵引速度越大,纤维束展宽稳定性越差。值得注意的是,当树脂粘度为1 300 mPa·s、纤维牵引速度为3 m/min、纤维张力为10 N、胶膜厚度为0.6 mm时,纤维束展开宽度最大,且宽度稳定性最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李新帅
文立伟
邓朱海
崔浩南
关键词:  热熔法  预浸纱  自动铺丝  展纱工艺  浸渍工艺    
Abstract: Hot-melt is an important method to produce prepreg. How to control the fiber spreading width and the stability of the width of fiber bundle are the key and difficult points of hot-melt process. In this work, an experimental platform was built based on machine vision detection techno-logy to explore the influence of four process parameters, namely fiber tension, fiber running speed, resin viscosity and resin coating thickness, on fiber bundle spreading width and width stability, with theoretical model and orthogonal experiments conducted. The results show that with the increase of fiber tension, fiber running speed, resin viscosity and resin coating thickness, the spreading width of fiber bundle tends to increase. The resin thickness has the greatest influence on the width of fiber bundle, followed by the resin viscosity, and finally the fiber tension and fiber running speed, and the experimental results are consistent with the theoretical model. The running speed of fiber has the greatest influence on the stability of the width. The higher the running speed of fiber, the worse the stability of the prepreg width. It is worth noting that when the resin viscosity is 1 300 mPa·s, the running speed of the fiber is 3 m/min, the fiber tension is 10 N, and the resin coating thickness is 0.6 mm, the fiber bundle has the widest spreading width and the best width stability.
Key words:  hot-melt method    prepreg    automatic fiber placement    lateral spreading fiber    impregnation process
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TB332  
基金资助: 国防基础科研计划(JCKY2019204A001);上海航天科技创新基金(SAST2019-117)
通讯作者:  wenliwei@nuaa.edu.cn   
作者简介:  李新帅,南京航空航天大学材料科学与技术学院在读硕士研究生,研究方向为复合材料成型自动化。
文立伟,南京航空航天大学材料科学与技术学院硕士研究生导师,副教授。2005年获得哈尔滨工业大学博士学位,现从事先进复合材料自动化成型技术研究。近年来发表有关铺放成型技术方面的论文50余篇,申请国家专利10余项,2009年获国防科技进步一等奖1项。
引用本文:    
李新帅, 文立伟, 邓朱海, 崔浩南. 一种热熔法制备预浸纱的展开宽度控制方法[J]. 材料导报, 2022, 36(6): 20100297-5.
LI Xinshuai, WEN Liwei, DENG Zhuhai, CUI Haonan. A Method to Control the Spreading Width of Prepreg in Hot-melt Process. Materials Reports, 2022, 36(6): 20100297-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100297  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20100297
1 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1),12(in Chinese).
杜善义.复合材料学报, 2007, 24(1),12.
2 Liu Y J, Wang X F, Xiao J. Acta Aeronautica ET Astronautica Sinica,2017,38(7),296 (in Chinese).
刘永佼, 王显峰, 肖军.航空学报, 2017,38(7),296.
3 Wen L W, Wang R Z, Xie F, et al. Materials Reports, 2019,33(S2),599(in Chinese).
文立伟,王若舟,谢飞.材料导报, 2019,33(S2),599.
4 Wen L W, Xiao J, Wang X F, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5),637(in Chinese).
文立伟, 肖军, 王显峰,等.南京航空航天大学学报, 2015, 47(5),637.
5 Wang X F, Yan B, Xue K, et al. Aeronautical Manufacturing Technology, 2019, 62(16),14(in Chinese).
王显峰, 严飙, 薛柯,等.航空制造技术, 2019, 62(16),14.
6 Ma D. Fiber placement trajectory planning and boundary processing for the revolution body. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2016(in Chinese).
马丁. 回转体自动铺丝轨迹规划及边界处理. 硕士学位论文, 南京航空航天大学, 2016.
7 Chang L. Research on efficient placement technology of composite laminates with complicated boundary. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2018(in Chinese).
常亮. 具有复杂边界复合材料层合板的高效铺放技术研究. 硕士学位论文, 南京航空航天大学, 2018.
8 Nygard P, Gustafson C G. Journal of Thermoplastic Composite Materials, 2004, 17(2),167.
9 Li X K, Zhao Y, Wang K, et al. Aeronautical Manufacturing Technology, 2018, 61(14),74(in Chinese).
李学宽, 肇研, 王凯,等. 航空制造技术, 2018, 61(14),74.
10 Feng Ren, Cong Zhang, Yang Yu, et al. Applied Composite Materials, 2017, 24(1),193.
11 Wilson S D R. Journal of Engineering Mathematics, 1997, 32(1),19.
12 Irfan M S, Machavaram V R, Mahendran R S, et al. Journal of Enginee-ring Mathematics, 2012, 46(3),311.
13 Feng Y C, Fu Z X, Cao B T, et al. Science Technology and Engineering, 2012, 12(7),1489(in Chinese).
冯一川, 傅增祥, 曹兵妥, 等. 科学技术与工程, 2012, 12(7),1489.
14 Fang J J. Preparation and properties of expanded carbon fiber reinforced polyethylene prepreg. Master's Thesis, Tiangong University, China, 2017 (in Chinese).
方建军. 展宽碳纤维增强改性聚乙烯预浸料的制备及性能研究. 硕士学位论文, 天津工业大学, 2017.
15 Xu T.Research on key technology in tow preparation for orbiter manufacture with fiber placement. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2016(in Chinese).
徐挺. 轨道飞行器自动铺丝制造用预浸纱制备关键技术研究. 硕士学位论文,南京航空航天大学,2016.
16 Ren F. Study on the impregnation on mechanism and technology of long fiber reinforced polypropylene composites. Master's Thesis, Beijing University of Chemical Technology, China, 2018 (in Chinese).
任峰. 长纤维增强聚丙烯复合材料浸渍工艺及机理的研究. 硕士学位论文,北京化工大学, 2018.
17 Li B B. Research on the structures andproperties of spread tow and spread tow fabric composites . Master's Thesis, Donghua University, China, 2015 (in Chinese).
李蓓蓓. 展纱及展纱织物复合材料结构及性能的研究. 硕士学位论文,东华大学, 2015.
18 Jürgen Nestler, Frank Vettermann, Dietmar Reuchsel. patent, EP1783252 A1,2008.
[1] 文立伟, 王若舟, 谢飞. 通过调节工艺参数控制热熔法制备的自动铺丝预浸纱的展开质量[J]. 材料导报, 2019, 33(Z2): 599-603.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed