Please wait a minute...
材料导报  2022, Vol. 36 Issue (6): 20110240-5    https://doi.org/10.11896/cldb.20110240
  无机非金属及其复合材料 |
适于涪陵页岩气田储集层的油基钻井液承压堵漏材料
王均1, 罗陶涛1, 蒲克勇2, 陶操3
1 重庆科技学院石油与天然气工程学院,重庆 401331
2 川庆钻探工程有限公司钻采工程技术研究院,四川 广汉 618300
3 长庆油田分公司第三采油厂,银川 750001
Oil-based Drilling Fluid Pressure-bearing Plugging Materials Suitable for Fuling Shale Gas Field Reservoir
WANG Jun1, LUO Taotao1, PU Keyong2, TAO Cao3
1 College of Oil and Gas Engineering of Chongqing University of Science and Technology,Chongqing 401331, China
2 Chuanqing Drilling Engineering Co., Ltd. of Drilling and Production Engineering Technology Research Institute,Guanghan 618300, Sichuan, China
3 The Third Oil Production Plant of Changqing Oilfield Branch, Yinchuan 750001, China
下载:  全 文 ( PDF ) ( 7833KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决涪陵页岩气田储集层长水平段井漏频发的技术难题,在分析该气田地质特征和井漏现状的基础上,研究适于油基钻井液的承压堵漏材料,材料具有高滤失、高固相、可压缩和可变形的优点。针对堵漏材料开展了抗温性评价、粒度分析评价、封堵实验研究和钻井液性能评价。实验结果表明:堵漏材料抗温性好,粒径主要分布在大于0.5 mm和小于0.25 mm范围。最佳复配堵漏方案为(1~2)%FRAC-ATTACK+(1~2)%STRARA VANGUARD+(1~2)%VANGUARD+(2~3)%STRARA-FLEX MEDIUM+(2~3)%STRARA-FLEX FINE。该复配堵漏材料与油基钻井液体系具有很好的配伍性,且适于不同宽度的裂缝。堵漏材料在1~2 mm裂缝中形成的封堵带致密坚实且能承受7 MPa的压力,累计漏失滤液量小于20 mL。现场应用表明:该复合堵漏材料与油基钻井液配伍性好,适用于涪陵页岩气田储集层防漏堵漏现场施工。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王均
罗陶涛
蒲克勇
陶操
关键词:  堵漏材料  油基钻井液  承压堵漏  实验评价    
Abstract: In order to solve the technical problem of frequent lost circulation in the long horizontal section of the reservoir in the Fuling shale gas field, based on the analysis of the geological characteristics of the gas field and the status of lost circulation, the pressure plugging material suitable for oil based drilling fluid was studied to solve the technical challenge of frequent lost circulation in the long horizontal section of the Fuling shale gas field.The material had the advantages of high filtration, high solid phase, compressibility and deformability. Temperature resistance evaluation, particle size analysis evaluation, plugging experimental research and drilling fluid performance evaluation were conducted for plugging mate-rials. The experimental results showed that the sealing material had good temperature resistance, and the particle size was mainly distributed in the range of larger than 0.5 mm and less than 0.25 mm. The best compound plugging scheme is (1—2)%FRAC-ATTACK+(1—2)%STRARA VANGUARD+(1—2)%VANGUARD+(2—3)%STRARA-FLEX MEDIUM+(2—3)%STRARA-FLEX FINE.The compound plugging material had good compatibility with the oil-based drilling fluid system and was suitable for fractures of different widths. The plugging zone formed by the plugging material in the 1—2 mm fracture is dense and firm and can withstand the pressure of 7 MPa, and the cumulative amount of filtrate lost in the experiment is less than 20 mL. Field application showed that the composite leakage plugging agent material had good compatibility with oil-based drilling liquid phase, and was suitable for on-site construction of reservoir leakage prevention and leakage prevention in Fuling shale gas field.
Key words:  plugging material    oil-based drilling fluid    pressure-bearing plugging    experimental evaluation
出版日期:  2022-03-25      发布日期:  2022-03-21
ZTFLH:  TE39  
基金资助: 重庆科技委员会技术创新与应用发展(社会民生类一般)项目(cstc2018jscx-msyb0142);重庆市教育委员会科学技术研究项目(KJQN201901538);重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0573)
通讯作者:  18900826@qq.com   
作者简介:  王均,重庆科技学院教师,讲师。2009年毕业于西南石油大学油气井工程专业,西南石油大学海洋油气工程博士研究生,主要从事油气井工作液技术方面的教学和科研工作。在国内外学术期刊上发表论文10余篇,其中SCI收录1篇,出版专著1部。主持重庆市科委自然科学基金项目2项、重庆市教委科技计划项目1项。
罗陶涛,重庆科技学院教师,高级工程师。2010年毕业于成都理工大学,获得博士学位,2010—2017年在中石油川庆钻探公司钻采工程技术研究院从事钻井液工作,2017年进入重庆科技学院从事油田化学及相关技术研究。获得中石油局级科技进步奖四项,学术论文获奖两项。获得发明专利12项,美国发明专利1项,石油和化工行业专利金奖1项。发表论文34篇,国外期刊3篇,国内期刊31篇,SCI收录3篇,EI收录3篇。
引用本文:    
王均, 罗陶涛, 蒲克勇, 陶操. 适于涪陵页岩气田储集层的油基钻井液承压堵漏材料[J]. 材料导报, 2022, 36(6): 20110240-5.
WANG Jun, LUO Taotao, PU Keyong, TAO Cao. Oil-based Drilling Fluid Pressure-bearing Plugging Materials Suitable for Fuling Shale Gas Field Reservoir. Materials Reports, 2022, 36(6): 20110240-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110240  或          http://www.mater-rep.com/CN/Y2022/V36/I6/20110240
1 Xu Tongtai, Liu Yujie. Lost circulation control technology for drilling engineering, Petroleum Industry Press, China, 1997(in Chinese).
徐同台,刘玉杰.钻井工程防漏堵漏技术, 石油工业出版社, 1997.
2 Chen Xingxing. Exploration Engineering (Rock and Soil Drilling and Tunneling Engineering), 2015,42(3),11(in Chinese).
陈星星.探矿工程(岩土钻掘工程), 2015,42(3),11.
3 Shu Man, Zhao Mingkun. Petroleum Drilling Technology, 2017, 45(3), 21(in Chinese).
舒曼,赵明琨. 石油钻探技术.2017,45(3), 21.
4 Chen Manfei, He Sheng, Yi Jizheng, et al. Acta Petrolei Sinica, 2019, 13(4), 423(in Chinese).
陈曼霏,何生,易积正.等.石油学报,2019,13(4), 423.
5 Liu Junyi, Qiu Zhengsong. Drilling Fluids and Completion Fluids, 2015,32(5),10(in Chinese).
刘均一,邱正松.钻井液与完井液, 2015,32(5),10.
6 Xu Mingbiao, Zhao Mingkun, Hou Shanshan, et al. Fault Block Oil and Gas Field, 2018, 25(6), 799(in Chinese).
许明标, 赵明琨, 侯珊珊, 等. 断块油气田, 2018,25(6),799.
7 Liang Wenli. Drilling Fluids and Completion Fluids,2018,35(3),37(in Chinese).
梁文利. 钻井液与完井液, 2018,35(3),37.
8 Zhou Xianhai, Zang Yanbin, Chen Xiaofeng. Journal of Jianghan Petro-leum University, 2015,28(3),16(in Chinese).
周贤海,臧艳彬,陈小锋.江汉石油职工大学学报, 2015,28(3),16.
9 Su Xiaoming, Lian Zhanghua, Fang Junwei, et al. Petroleum Exploration and Development, 2019,46(1),165(in Chinese).
苏晓明,练章华,方俊伟,等.石油勘探与开发, 2019,46(1),165.
10 He Xinxing, Li Gao, Duan Mubai, et al. Petroleum Drilling Technology, 2018,46(4),65(in Chinese).
何新星,李皋,段慕白,等. 石油钻探技术, 2018,46(4),65.
11 He Long. Drilling and Production Technology,2019,42(3),42(in Chinese).
何龙.钻采工艺, 2019,42(3),42.
[1] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed