Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1011-1016    https://doi.org/10.11896/cldb.201906018
  金属与金属基复合材料 |
超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究
王一雍, 周新宇, 金辉, 梁智鹏
辽宁科技大学材料与冶金学院, 鞍山 114051
Ultrasonic-wave-assisted Electrodeposition of Ni-Co/Y2O3 Composite Coatings: an Electrochemical Study
WANG Yiyong, ZHOU Xinyu, JIN Hui, LIANG Zhipeng
School of Materials & Metallurgy,University of Science and Technology Liaoning, Anshan 114051
下载:  全 文 ( PDF ) ( 2741KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究Y2O3纳米粒子在与Ni2+和Co2+共沉积过程中的电化学行为,揭示Ni-Co/Y2O3复合镀层的电结晶机理,针对Ni-Co/Y2O3的超声辅助电沉积进行了循环伏安(CV)、计时电流(CA)、交流阻抗(EIS)等电化学测试,并通过对实验曲线的拟合计算出共沉积过程的动力学参数。结果表明,Y2O3纳米粒子与基质金属的共沉积使形核/生长电位正移,阴极极化度减小。Ni-Co合金和Ni-Co/Y2O3复合镀层的形核/生长符合Scharifker-Hill瞬时成核模型:低负电位下,复合镀层的成核速率更高,Y2O3纳米粒子对Ni-Co合金的形核起促进作用;高负电位下,Y2O3纳米粒子抑制了Ni-Co合金的形核过程。拟合计算结果与实验曲线的理论分析一致。EIS测试表明,Y2O3纳米粒子对电极/电解液界面处的双电层无明显影响,但会减小复合共沉积过程的电荷转移电阻。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王一雍
周新宇
金辉
梁智鹏
关键词:  超声辅助电沉积  Ni-Co/Y2O3复合镀层  电化学测试  电结晶  曲线拟合  动力学参数    
Abstract: The aim of this work is to study the electrochemical behavior of Y2O3 nanoparticles in co-deposition process with Ni2+ and Co2+, and to explore the electro-crystallization mechanism of composite coating formation. Our study involved cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) tests for the ultrasonic-wave-assisted electrodeposition process of a plating system that contained Ni2+, Co2+ and Y2O3 nanoparticles, and obtained the kinetic parameters of co-precipitation by a calculation based on fitting the experimental curves. The results indicated that the addition of Y2O3 nanoparticles into the Ni2+-Co2+ system causes a positive shift for the initial de-position potential of Ni2+ and Co2+, and a decline in cathodic polarization. The nucleation/growth of both Ni-Co alloy and Ni-Co/Y2O3 composite coatings coincide well with Scharifker-Hill instantaneous nucleation model. Y2O3 nanoparticles can promote the nucleation of Ni2+ and Co2+ at low negative potentials, resulting in a higher nucleation rate for the Ni-Co/Y2O3 composite coating compared with the Ni-Co alloy coating, but will exert the opposite influence on the nucleation of Ni-Co alloy if more negative potentials are applied. The calculation results were in correspondence with the theoretical analysis over the experimental curves. According to the EIS result, Y2O3 nanoparticles have inconspicuous effect on the electric double layer at the electrode/electrolyte interface, but lead to diminishing charge transfer resistance in co-deposition.
Key words:  ultrasonic-wave-assisted electrodeposition    Ni-Co/Y2O3 composite coating    electrochemical test    electro-crystallization    curve fitting    kinetic parameter
                    发布日期:  2019-04-03
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(51674141);辽宁省自然科学基金(201602401)
作者简介:  王一雍,辽宁科技大学材料与冶金学院副教授、硕士生导师。
引用本文:    
王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
WANG Yiyong, ZHOU Xinyu, JIN Hui, LIANG Zhipeng. Ultrasonic-wave-assisted Electrodeposition of Ni-Co/Y2O3 Composite Coatings: an Electrochemical Study. Materials Reports, 2019, 33(6): 1011-1016.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906018  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1011
1 Zhou H F,Du N,Zhao Q,et al.Electeoplating & Finishing,2005,24(6),41(in Chinese).
周海飞,杜楠,赵晴.电镀与涂饰,2005,24(6),41.
2 Du N,Zhou H F,Zhao Q,et al.Journal of Materials Engineering, 2008(2),23(in Chinese).
杜楠, 周海飞, 赵晴,等.材料工程,2008(2),23.
3 Tudela I, Zhang Y, Pal M, et al.Surface & Coatings Technology,2015,276,89.
4 Chen W,Gao W. Composites Part A Applied Science & Manufacturing,2011,42(11),1627.
5 Chen W,Gao W.Electrochimica Acta,2010,55,6865.
6 Ranganatha S, Venkatesha T V, Vathsala K. Surface & Coatings Technology,2012,208(6),64.
7 Cheng J Q,Yao S W,Wang H Z, et al. Materials of Machanical Engineering,2005,29(3),55(in Chinese).
程敬泉, 姚素薇, 王宏智,等. 机械工程材料,2005,29(3),55.
8 Beltowska-Lehman E, Indyka P, Bigos A, et al. Materials & Design,2015,80,1.
9 Ataie S A, Zakeri A. Journal of Alloys & Compounds,2016,674,315.
10 Zhou X W,Ou Y C,Qiao Y X, et al. Acta Metallurgica Sinica,2017(2),140(in Chinese).
周小卫, 欧阳春, 乔岩欣,等. 金属学报,2017(2),140.
11 Xue Y J,Si D H,Liu H B, et al.The Chinese Journal of Nonferrous Me-tals,2011,21(9),2157(in Chinese).
薛玉君, 司东宏, 刘红彬,等.中国有色金属学报,2011,21(9),2157.
12 Tebbakh S, Beniaiche A, Fenineche N, et al. Transactions of the IMF,2013,91(1),17.
13 Wu G, Li N, Zhou D R. Journal of Chemical Engineering of Chinese Universities,2005,19(1),48.
武刚, 李宁, 周德瑞. 高校化学工程学报,2005,19(1),48.
14 Wu G, Li N, Wang D L, et al. Materials Chemistry & Physics,2004,87(2),411.
15 Abou-Krisha M M, Assaf F H, Toghan A A. Journal of Solid State Electrochemistry,2007,11(2),244.
16 Wang M J, Wang R C, Peng C Q, et al.The Chinese Journal of Nonferrous Metals,2013(3),765(in Chinese).
王美娟, 王日初, 彭超群,等. 中国有色金属学报,2013(3),765.
17 Song L X, Zhang Z, Zhang J Q, et al. Acta Metallurgica Sinica,2011(1),123(in Chinese).
宋利晓, 张昭, 张鉴清,等. 金属学报,2011(1),123.
18 Scharifker B, Hills G. Electrochimica Acta,1983,28(7),879.
19 Raeissi K, Saatchi A, Golozar M A. Journal of Applied Electrochemistry,2003,33(7),635.
20 Qian Z H, Zhou H F, Du N, et al. Rare Metal Materials and Enginee-ring,2014(7),1633(in Chinese).
钱洲亥, 周海飞, 杜楠,等. 稀有金属材料与工程,2014(7),1633.
21 Chu G, Liu S Z.Journal of Central South University (Science and Technology),2007,38(3),474(in Chinese).
楚广, 刘生长. 中南大学学报(自然科学版),2007,38(3),474.
22 Xu M L, Zhang Z F, Yang X W, et al. Materials Review,2006,20(9),158.
徐明丽, 张正富, 杨显万,等. 材料导报,2006,20(9),158.
23 Vathsala K.Applied Surface Science,2011,257(21),8929.
24 Basavanna S, Naik Y A. Journal of Applied Electrochemistry,2009,39(10),1975.
25 Palomar-Pardavé M, Scharifker B R, Arce E M, et al. Electrochimica Acta,2005,50(24),4736.
26 Diard J P, Gorrec B L, Montella C. Journal of Electroanalytical Chemistry,2001,499(1),67.
27 Qu N S, Zhu D, Chan K C. Scripta Materialia,2006,54(7),1421.
28 Monshi A, Foroughi M R, Monshi M R. World Journal of Nano Science & Engineering,2012,2(2),154.
[1] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[2] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[3] 杨鸿泰, 代明江, 李洪, 林松盛, 侯慧君, 石倩, 韦春贝. Al含量对TiAlN涂层组织结构和性能的影响[J]. 材料导报, 2018, 32(20): 3573-3578.
[4] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[5] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[6] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[7] 张天刚,孙荣禄,安通达,张宏伟. Ti811表面单道与多道TC4激光熔覆层微观组织对比[J]. 《材料导报》期刊社, 2018, 32(12): 1983-1987.
[8] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[9] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[10] 吴坤尧, 孟志新, 李兆, 丁旭, 张斌, 张俊彦. 低摩擦长寿命类富勒烯碳基薄膜的制备及其摩擦学特性[J]. 《材料导报》期刊社, 2018, 32(4): 559-562.
[11] 杨理京,李争显,黄春良,王培,姚建华. 激光辅助冷喷涂制备高硬度材料涂层的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 412-417.
[12] 赵聪硕,邢志国,王海斗,李国禄,刘喆. 铁碳合金表面激光熔覆的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 418-426.
[13] 靳鹏, 钟伟强, 李富祥, 林巧力. 6061铝合金分别在Q235钢和纯钛表面的反应润湿*[J]. 《材料导报》期刊社, 2017, 31(18): 59-63.
[14] 赵钦, 马国政, 王海斗, 李国禄, 陈书赢, 刘明. 等离子喷涂用Y2O3稳定ZrO2空心球形粉末制备技术及涂层性能的研究现状*[J]. 《材料导报》期刊社, 2017, 31(15): 60-67.
[15] 任波, 赵瑞锋, 刘忠侠. 高熵合金氮化物薄膜的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 44-50.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed