Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1006-1010    https://doi.org/10.11896/cldb.201906017
  金属与金属基复合材料 |
半固态挤压高硅铝合金二次加热的微观组织演变
陈志国1,2, 方亮2, 吴吉文1, 张海筹1, 马文静2, 白月龙3,4
1 湖南人文科技学院能源与机电工程学院,娄底 417000
2 中南大学材料科学与工程学院,长沙 410083
3 北京有色金属研究总院,北京 100088
4 湖南文昌科技有限公司,娄底 417000
Microstructure Evolution of an Extruded High Silicon Semi-solid State Aluminum Alloys During Reheating
CHEN Zhiguo1,2, FANG Liang2, WU Jiwen1, ZHANG Haichou1, MA Wenjing2, BAI Yuelong3,4
1 School of Energy and Electromechanical Engineering, Hunan University of Humanities Science and Technology, Loudi 417000
2 School of Materials Science and Engineering, Central South University, Changsha 410083
3 General Research Institute for Nonferrous Metals, Beijing 100088
4 Hunan Wenchang Technology Company Limited, Loudi 417000
下载:  全 文 ( PDF ) ( 2849KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本实验研究了半固态挤压高硅铝合金二次加热微观组织演变规律,以获得具有细小、近球状晶粒的组织。研究结果表明,二次加热功率和二次加热温度是影响二次加热过程的两大主要因素,随加热功率的增加,坯料心部和边部的组织差异变大,而随二次加热温度的升高,细小、不规则的晶粒逐渐长大并呈现出球化趋势。分析各工艺下的微观组织,得到适合于触变成形的二次加热工艺为:加热功率7 kW、加热温度530 ℃。此条件下获得的平均晶粒直径为35.2 μm,抗拉强度为418.5 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈志国
方亮
吴吉文
张海筹
马文静
白月龙
关键词:  挤压态  高硅铝合金  二次加热功率  二次加热温度    
Abstract: The present work aimed to investigate the rule of reheating an extruded high silicon aluminum alloy into semi-solid state, so as to obtain a near globular microstructure. The results showed that reheating power and reheating temperature are two key parameters which affect considerably the reheating process. The increase of heating power can magnify the difference of microstructure for core and edge parts of billets. And with the increase of reheating temperature, the fine and irregular grains grow gradually and spheroidizes. The optimum reheating process parameters suitable for thixoforming were determined to be 7 kW (power) and 530 ℃ (temperature), by analyzing the microstructure for different process. Under this processing condition, the average grain diameter of the resultant specimen experienced reheating was 35.2 μm and the ultimate strength was 418.5 MPa.
Key words:  extrusion    high-silicon aluminum alloys    reheating power    reheating temperature
               出版日期:  2019-03-25      发布日期:  2019-04-03
ZTFLH:  TG146.2  
基金资助: 湖南省双一流学科建设项目;湖南省娄底市科技计划项目(2016ZD05)
作者简介:  陈志国,湖南人文科技学院教授、中南大学材料科学与工程学院博士生导师。
引用本文:    
陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
CHEN Zhiguo, FANG Liang, WU Jiwen, ZHANG Haichou, MA Wenjing, BAI Yuelong. Microstructure Evolution of an Extruded High Silicon Semi-solid State Aluminum Alloys During Reheating. Materials Reports, 2019, 33(6): 1006-1010.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906017  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1006
1 Vencl A, Bobie I, Miskovie Z. Wear,2008,264(7-8),616.
2 Luo S J, Keung W C, Kang Y L. Transactions of Nonferrous Metals Society of China,2010,20(9),1805.
3 Cao F R, Guan R G, Chen L Q, et al. The Chinese Journal of Nonferrous Metals,2012,22(1),7(in Chinese).
曹富荣,管仁国,陈礼清,等.中国有色金属学报,2012,22(1),7.
4 Wang J, Xiao H, Wu L B, et al. Acta Metallurgica Sinica,2014,50(5),567(in Chinese).
王佳,肖寒,吴龙彪,等.金属学报,2014,50(5),567.
5 Wang C, Mei H, Li R, et al. Acta Metallurgica Sinica (English Letters),2013,26(2),149.
6 Jiang J, Wang Y, Qu J, et al. Journal of Alloys and Compounds,2010,497,62.
7 Hassas-Irani S B, Zarei-Hanzaki A, Bazaz B, et al. Materials & Design,2013,46,579.
8 MoradiM, Nili-Ahamadabadi M, Poorganji B, et al. Materials Science and Engineering:A,2010,527(16/17),4113.
9 Atkinson H V, Burke K, Vaneetveld. Materials Science and Engineering: A,2008,490(1),266 .
10 Seo P K, Kang C G. Journal of Materials Processing Technology,2005,162(5),402.
11 Nafisi S, Ghomashchi R. Materials Science and Engineering: A,2006,416,273.
12 Zhou Z M, Wang N, LI Y, et al. Special Casting & Nonferrous Alloys,2012,32(2),99(in Chinese).
周志敏,王娜,李勇,等.特种铸造及有色合金,2012,32(2),99.
13 Birol Y. Journal of Alloys and Compounds,2009,486(1),173.
14 Luo S, Lin G Y, Zeng J H, et al. The Chinese Journal of Nonferrous Me-tals,2011, 21(7),1521(in Chinese).
罗淞,林高用,曾菊花,等.中国有色金属学报,2011,21(7),1521.
15 Ashouri S, NILI-Ahmadabadi M, Moradi M, et al. Journal of Alloys and Compounds,2008,266,67.
16 Lukas H L, Fries S G, Sundman B. Computational thermodynamics:the Calphad method, Cambridge University Press, UK,2007.
17 Wang C P, Liu X J, Ma Y Q, et al. The Chinese Journal of Nonferrous Metals,2005,15(11),1848(in Chinese).
王翠萍,刘兴军,马云庆,等.中国有色金属学报,2005,15(11),1848.
18 Alireza H A, Frank A. Acta Materialia,2010,58,3422.
19 Li J, Elmadagli M, Gertsman V Y, et al. Materials Science and Enginee-ring:A,2006,421,317.
20 Mohamed A M A, Samuel F H, Kahtani S A. Materials Science and Engineering:A,2013,577,64.
21 Cui C L, Mao W M, Zhao A M, et al. The Chinese Journal of Nonferrous Metals,2000, 10(6),809(in Chinese).
崔成林, 毛卫民, 赵爱民, 等.中国有色金属学报,2000,10(6),809.
22 Jiang H, Nguyen T H, Prud’homme M. Journal of Materials Processing Technology,2007,189,182.
23 Wang S C, Li Y Y, Chen W P, et al.Acta Metallurgica Sinica, 2008,44(8),905(in Chinese).
王顺成, 李元元, 陈维平, 等.金属学报,2008,44(8),905.
24 Engler O. Materials Science and Technology,1996,12(10),859.
25 Zhou W, Ge P, Zhao Y Q, et al. Rare Metal Materials and Engineering,2012,41(8),1381(in Chinese).
周伟, 葛鹏, 赵永庆, 等.稀有金属材料与工程,2012,41(8),1381.
26 Feng D, Zhang X M, Liu S D, et al. Rare Metal Materials and Enginee-ring,2016,45(8),2104(in Chinese).
冯迪, 张新明, 刘胜胆, 等.稀有金属材料与工程,2016,45(8),2104.
27 Saklakoglu N, Sakiakoglu I E, Tanoglu, et al. Journal of Materials Processing Technology,2004,148,103.
28 Liu C M, Zou M H, Zhang Z H, et al. The Chinese Journal of Nonferrous Metals,2002,12(3),436(in Chinese).
刘昌明, 邹茂华, 章宗和, 等.中国有色金属学报,2002,12(3),436.
[1] 郑嫄, 蔡中义, 程丽任, 车朝杰, 张洪杰. 铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn合金微观组织和力学性能研究[J]. 材料导报, 2019, 33(8): 1354-1360.
[2] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed