Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 44-50    https://doi.org/10.11896/j.issn.1005-023X.2017.011.006
  材料综述 |
高熵合金氮化物薄膜的研究进展*
任波1,2, 赵瑞锋1,3, 刘忠侠3
1 河南工程学院机械工程学院,郑州 451191;
2 郑州大学材料科学与工程学院,郑州 450052;
3 郑州大学物理工程学院,材料物理教育部重点实验室,郑州450052
Advances in Nitride Films of High Entropy Alloy
REN Bo1,2, ZHAO Ruifeng1,3, LIU Zhongxia3
1 School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191;
2 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052;
3 Materials Physics Key Laboratory of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052
下载:  全 文 ( PDF ) ( 1518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于多元高熵合金思想制备的高熵合金氮化物薄膜由于多种元素相互混合,易于产生高熵效应、晶格畸变效应和缓慢扩散效应,使得该新型薄膜体系形成简单的非晶结构和纳米晶结构。依赖于成分和制备工艺,多元高熵合金氮化物薄膜表现出简单的固溶体结构和优异的性能,因而在许多领域极具应用潜力。综述了高熵合金氮化物薄膜的发展概况、组织特点、性能特征、制备方法和应用前景,并对高熵合金氮化物薄膜的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任波
赵瑞锋
刘忠侠
关键词:  多元高熵合金  氮化物薄膜  微观组织    
Abstract: Nitride films of high entropy alloys fabricated based on the idea of multi-principal-element high entropy alloy have been found to possess high entropy effect, lattice distortion effect, and sluggish diffusion effect due to multielemental mixtures. This makes the new film system usually have a simple nanocrystalline or amorphous structures. Depending upon the composition and/or processing route, the nitride films of multi-principal-element high entropy alloy exhibit simple solid solution structure and excellent properties, and they have potential application in many areas. In this article, the development, microstructure, properties, proces-sing route and promising application of nitride films of high entropy alloys are summarized, and its directions of future research are also discussed.
Key words:  multi-principal-element high entropy alloy    nitride film    microstructure
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG174.445  
基金资助: 中国博士后基金面上项目(2013M541986);河南工程学院博士基金(D2013013);河南省科技攻关计划项目(162102210286);河南省高等学校青年骨干教师培养计划(2016GGJS-154)
作者简介:  任波:男,1980年生,博士,副教授,主要从事高熵合金、高熵合金氮化物薄膜研究 E-mail:renbo193513@163.com
引用本文:    
任波, 赵瑞锋, 刘忠侠. 高熵合金氮化物薄膜的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 44-50.
REN Bo, ZHAO Ruifeng, LIU Zhongxia. Advances in Nitride Films of High Entropy Alloy. Materials Reports, 2017, 31(11): 44-50.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.006  或          http://www.mater-rep.com/CN/Y2017/V31/I11/44
1 Cantor B, Chang I T H, Knight P. Microstructural development in equiatomic multicomponent alloys [J]. Mater Sci Eng A, 2004, 375:213.
2 Yeh J W, Chen S K, Gan J Y, et al. Formation of simple crystal structure in solid-solution alloys with multi-principal metallic elements [J]. Metall Mater Trans A, 2004, 35:2533.
3 Yeh J W, Chen S K, Lin S J. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concept s and outcomes [J]. Adv Eng Mater, 2004, 6(5):299.
4 Ma D C, Yao M J, et al. Phase stability of non-equi-atomic CoCr-FeMnNi high entropy alloys [J]. Acta Mater, 2015, 98:288.
5 Zhang Y, Zhou Y J, et al. Solid-solution phase formation rules for multi-compoent alloys [J]. Adv Eng Mater, 2008, 10(6):534.
6 Li C, Li J C, Zhao M, et al. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys [J]. J Alloys Compd, 2009, 475:752.
7 Wang F J, Zhang Y. Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy [J]. Matr Sci Eng A, 2008, 496(1-2):214.
8 Dong Y, Gao X X, Lu Y P, et al. A multi-component AlCrFe2Ni2 alloy with excellent properties [J]. Mater Lett, 2016, 169:62.
9 Tsao L C, Chen C S, Chu C P. Age hardening reaction of the Al0.3-CrFe1.5MnNi0.5 high entropy alloy [J]. Mater Des, 2012, 36:854.
10 Zhang C, Zhang F, Chen S L, et al. Computational thermodynamics aided high-entropy alloy design [J]. JOM, 2012, 64(7):839.
11 Zhang B, Gao M C, Zhang Y, et al. Senary refractory high entropy alloy MoNbTaTiVW [J]. Mater Sci Technol, 2015, 31(10):1207.
12 Lu Y P, Dong Y, et al. A promising new class of high-temperature alloys:Eutectic high-entropy alloys [J]. Sci Rep, 2014, 4:6200.
13 Gao M C, Zhang B, et al. Senary refractory high entropy alloy Hf-NbTaTiVZr [J]. Metall Mater Trans A, 2016, 47(7):3333.
14 Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf Coat Technol, 2004, 188-189:193.
15 Chen T K, Wong M S, Shun T T, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J]. Surf Coat Technol, 2005, 200:1361.
16 Cheng C Y, Yeh J W. High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties [J]. Mater Lett, 2016, 185:456.
17 Chang Z C, Tsai D C, Chen E C. Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings [J]. Mater Sci Semicond Process, 2015, 39:30.
18 Tsau C H, Yang Y C, et al. The low electrical resistivity of the high-entropy alloy oxide thin films [J]. Procedia Eng, 2012, 36: 246.
19 Chang S Y, Lin S Y, Huang Y C. Microstructure and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings [J]. Thin Solid Films, 2011, 519(15):4865.
20 Tsai D C, Deng M J, Chang Z C, et al. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering [J]. J Alloys Compd, 2015, 647:179.
21 Dolique V, Thomann A L, Brault P, et al. Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy [J]. Mater Chem Phys, 2009, 117:142.
22 Dolique V, Thomann A L, Brault P, et al. Thermal stability of AlCoCrCuFeNi high-entropy-alloy thin films studied by in-situ XRD analysis[J]. Surf Coat Technol, 2010, 204:1989.
23 Ren B, Liu Z X, Shi L, et al. Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering [J]. Appl Surf Sci, 2011, 257(16):7172.
24 Braic V, Balaceanu M, et al. Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications [J]. J Mechan Behav Biomed Mater, 2012, 10:197.
25 Sobol O V, Andreev A A, Gorban V F, et al. Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the va-cuum-arc method [J]. Techn Phys Lett, 2012, 38(7):616.
26 Grigoriev S N, Sobol O V, Beresnev V M, et al. Tribological cha-racteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method [J]. J Fric Wear, 2014, 35(5):359.
27 Meng F L, Baker I. Nitriding of a high entropy FeNiMnAlCr alloy [J]. J Alloys Compd, 2015, 645:376.
28 Chang Z C, Liang S C, Han S,et al. Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering [J]. Nucl Instrum Methods Phys Res Section B, 2010, 268(16):2504.
29 Liang S C, Chang Z C, Tsai D C, et al. Effects of substrate tempe-rature on the structure and mechanical properties of (TiVCrZrHf)N coatings [J]. Appl Surf Sci, 2011, 257(17):7709.
30 Chang H W, Huang P K, Yeh J W, et al. Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings[J]. Surf Coat Technol, 2008, 202:3360.
31 Tsai D C, Chang Z C, Kuo B H, et al. Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering [J]. Appl Surf Sci, 2013, 282:789.
32 Ren B, Yan S Q, Zhao R F, et al. Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering [J]. Surf Coat Technol, 2013, 235:764.
33 Tsai D C, Chang Z C, Kuo B H, et al. Effects of silicon content on the structure and properties of (AlCrMoTaTi)N coatings by reactive magnetron sputtering [J]. J Alloys Compd, 2014, 616:646.
34 Cheng K H, Lai C H, Lin S J, et al. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering [J]. Thin Solid Films, 2011, 519:3185.
35 Ren B, Shen Z G, Liu Z X. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering [J]. J Alloys Compd, 2013, 560:171.
36 Hsieh M H, Tsai M H, Shen W H, et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings [J]. Surf Coat Technol, 2013, 221:118.
37 Lin Y H. Hard nitride films of AlxCrNbTaTiZr alloy prepared by RF dual magnetron sputtering techniques [D]. Xinzhu:National Tsing Hua University, 2007(in Chinese).
林彦宏. 利用射频磁控溅镀法共镀AlxCrNbTaTiZr高熵合金氮化物薄膜及其性质探讨[D]. 新竹: 新竹清华大学, 2007.
38 Huang P K, Yeh J W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating [J]. Surf Coat Technol, 2009, 203(13):1891.
39 Wang S W. A study on nitride of six, seven and eight elements high-entropy alloy prepared by RF magnetron sputtering [D]. Xinzhu:National Tsing Hua University, 2006(in Chinese).
王士维. 利用射频磁控溅镀法制备六、七、八元高熵合金氮化物薄膜及其性质探讨[D]. 新竹: 新竹清华大学, 2006.
40 Lai C H, Tsai M H, Lin S J, et al. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings [J]. Surf Coat Technol, 2007, 201:6993.
41 Lin C H, Duh J G, Yeh J W. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputtering [J]. Surf Coat Technol, 2007, 201:6304.
42 Hsueh H T, et al. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx [J]. Surf Coat Technol, 2012, 206(19-20):4106.
43 Tsai D C, Huang Y L, Lin S R, et al. Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering[J]. Appl Surf Sci, 2010, 257(4):1361.
44 Tsai D C, Chang Z C, Kuo B H, et al. Interfacial reactions and cha-racterization of (TiVCrZrHf)N thin films during thermal treatment [J]. Surf Coat Technol, 2014, 240:160.
45 Pogrebnjak A D, Yakushchenko I V, Bagdasaryan et al. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions [J]. Mater Chem Phys, 2014, 147:1079.
46 Nemchenko U S, Beresnev V M, et al. Wear resistance of the multicomponent coatings of the (Ti-Zr-Hf-V-Nb-Ta)N system at elevated temperature [J]. J Superhard Mater,2015, 37(5):322.
47 Feng X G, Tang G Z, Ma X X, et al. Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based ion implantation [J]. Nucl Instrum Methods Phys Res B, 2013, 301:29.
48 Lai C H, Cheng K H, Lin S J, et al. Mechanical and tribological pro-perties of multi-element (AlCrTaTiZr)N coatings [J]. Surf Coat Technol, 2008, 202(15): 3732.
49 Ye C F, et al. The effect of nitrogen on the corrosion behavior of high entropy thin films AlCrTaTiZr in 0.1 M sulfuric acid [J]. J Chin Corros Eng, 2009, 23(4):245 (in Chinese).
叶菁馥, 等. 氮含量对AlCrTaTiZr高熵薄膜在0.1 M硫酸溶液中腐蚀性质之影响 [J]. 防蚀工程, 2009, 23(4):245.
50 Lin C H, Duh J G. Corrosion behavior of (Ti-Al-Cr-Si-V)xVy coa-tings on mild steels derived from RF magnetron sputtering [J]. Surf Coat Technol, 2008, 203(5-7):558.
51 Tsai M H, Wang C W, Lai C H, et al. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization [J]. Appl Phys Lett, 2008, 92(5):052109-1.
52 Chang S Y, Chen M K. High thermal stability of AlCrTaTiZr nitride film as diffusion barrier for copper metallization [J]. Thin Solid Films, 2009, 517(17):4961.
53 Chang S Y, Chen D S. (AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900 ℃[J]. Mater Chem Phys, 2011, 125(1-2):5.
54 Huang P K, Yeh J W. Inhibition of grain coarsening up to 1 000 ℃ in (AlCrNbSiTiV)N superhard coatings [J]. Scr Mater, 2010, 62(2):105.
55 Firstov S A, Gorban V F, Danilenko N I. Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy[J]. Powder Metall Metal Ceram, 2014, 52(9-10):560.
56 Liu J Y, Wu L L. Research progress of high-speed cutting tool materials [J]. Heat Treatment Technol, 2012, 33(1):39 (in Chinese).
刘建永, 吴连连. 高速切削刀具材料的研究进展[J]. 热处理技术与装备,2012, 33(1):39.
57 张子钦,宋寰欣,林奕辰,等. 高熵合金氮化物薄膜被覆于超硬刀具表面制程之微结构与切削性研究[C]//2009绿色科技工程与应用研讨会.台中,2009:372.
58 Chang S Y, Li C E, Chiang S C, et al. 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects [J]. J Alloys Compd, 2012, 515:4.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[5] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[6] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[7] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[8] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[9] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[10] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[11] 丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
[12] 张金祥, 欧阳希, 周健, 张济山. Cr含量降低对H13钢组织与力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1323-1327.
[13] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[14] 郑丽娟, 付宇明, 宗磊, 齐童. 交变磁场对高硬熔覆层成型质量的影响[J]. 材料导报, 2018, 32(6): 905-908.
[15] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed