Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23020177-10    https://doi.org/10.11896/cldb.23020177
  金属与金属基复合材料 |
轻质高熵合金微观组织及力学性能研究进展
郭晖1, 曹晓卿1,*, 孙逸舟1, 林鹏1, 刘亚玲2, 李培友2
1 太原理工大学材料科学与工程学院,太原 030024
2 陕西理工大学材料科学与工程学院,陕西 汉中 723001
Progress on Microstructure and Mechanical Properties of Light-weight High Entropy Alloys
GUO Hui1, CAO Xiaoqing1,*, SUN Yizhou1, LIN Peng1, LIU Yaling2, LI Peiyou2
1 School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
下载:  全 文 ( PDF ) ( 39368KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高熵合金是由五种或更多种金属元素等原子比例或者非等原子比例构成的新型合金,具有优异的物理化学性能。近年来,高熵合金已成为材料界的研究热点,各种高性能高熵合金的研究取得了重大进展。轻质高熵合金作为一种特殊的类别,具有优良的综合性能和低密度的特点,因此受到越来越多的关注。在航空航天、交通运输及核电工业领域,通常需要密度低、强度高、塑性好、室温高温力学性能优异的材料,使得此类轻质高熵合金的研究显得尤为重要。本文综述了轻质高熵合金的微观组织及力学性能的研究进展,并列举了两种典型轻质高熵合金体系的组织性能特点,最后对轻质高强高熵合金的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭晖
曹晓卿
孙逸舟
林鹏
刘亚玲
李培友
关键词:  高熵合金  低密度  微观组织  力学性能    
Abstract: High entropy alloy is a new type of alloy composed of 5 kinds or more metal elements with equal atomic ratio or non-equal atomic ratio. This kind of alloy has excellent physical and chemical properties. Recently, high entropy alloys have become a research hot spot in the material world, and significant progress has been made in studying various high performance high entropy alloys. Light-weight high-entropy alloys have excellent comprehensive performance and low density, which has attracted more and more special attention. In the field of aerospace, transportation and nuclear power industry, materials with low density, high strength, good plasticity and excellent high-temperature mechanical properties are usually needed. The research of such light and high entropy alloys is particularly important. This paper summarizes the progress of the microstructure and mechanical properties of Light-weight and high entropy alloys, and lists the characteristics of two typical light high entropy alloy systems, and finally discusses their future development.
Key words:  high entropy alloy    low-density    microstructure    mechanical property
发布日期:  2024-10-12
ZTFLH:  TG146  
基金资助: 山西省基础研究计划项目(20210302123117)
通讯作者:  *曹晓卿,通信作者,太原理工大学材料科学与工程学院教授、硕士研究生导师。1987年于西安交通大学材料科学与工程系获学士学位,1990年于西北工业大学材料科学与工程系获硕士学位,2006年于太原理工大学应用力学所获工学博士学位,1990到太原理工大学工作至今。目前主要从事高熵合金塑性成形及组织性能演变、轻金属层叠复合板的制备及塑性变形机理等方面的研究工作。发表学术论文50余篇,其中SCI、EI收录20余篇,出版教材5部,授权发明专利7项。caoxiaoqing@tyut.edu.cn   
作者简介:  郭晖,2019年6月于太原科技大学获得工学学士学位。现为太原理工大学材料科学与工程学院硕士研究生,在曹晓卿教授与林鹏副教授的指导下进行研究。目前主要研究领域为高熵合金塑性成形及组织性能演变。
引用本文:    
郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
GUO Hui, CAO Xiaoqing, SUN Yizhou, LIN Peng, LIU Yaling, LI Peiyou. Progress on Microstructure and Mechanical Properties of Light-weight High Entropy Alloys. Materials Reports, 2024, 38(18): 23020177-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020177  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23020177
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A, 2004, 375-377, 213.
3 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153.
4 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227.
5 Raphel A, Kumaran S, Kumar K V, et al. Materials Today:Proceedings, 2017, 4, 195.
6 Tsao T K, Yeh A C, Kuo C M, et al. Entropy, 2016, 18, 62.
7 Butler T M, Chaput K J, Dietrich J R, et al. Journal of Alloys and Compounds, 2017, 729, 1004.
8 Gorr B, Mller F, Azim M, et al. Oxidation of Metals, 2017, 88, 339.
9 Kai W, Cheng F P, Liao C Y, et al. Materials Chemistry and Physics, 2017, 210, 362.
10 An Z B, Mao S C, Yang T, et al. Science China Materials, 2022, 65(10), 2842.
11 Zhi Q, Tan X R, Xie J L, et al. Journal of Materials Engineering and Performance, 2022, 31(6), 4934.
12 Chae M J, Sharma A, Oh M C, et al. Metals and Materials International, 2021, 27, 629.
13 Klimenko D N, Yurchenko N Y, Stepanov N D, et al. Materials Today:Proceedings, 2020, 38, 1535.
14 Stepanova N D, Yurchenkoa N Y, Panina E S. , et al. Materials Letters, 2017, 188, 162.
15 Yurchenko N Y, Stepanov N D, Zherebtsov S V, et al. Materials Science and Engineering A, 2017, 704, 82.
16 Li D, Dong Y, Zhang Z Q, et al. Journal of Alloys and Compounds, 2021, 877(19), 160199.
17 Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Materials Letters, 2015, 142, 153.
18 Yao J Q. Thermal stability, phase structure, and mechanical properties of low-density refractory high-entropy alloys. Master’s Thesis, Huazhong University of Science and Technology, China, 2011 (in Chinese).
姚俊卿. 低密度难熔高熵合金的热稳定性、相结构与力学性能. 硕士学位论文, 华中科技大学, 2011.
19 Zherebtsov S, Yurchenko N, Panina E, et al. Intermetallics, 2020, 116, 106652.
20 Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Materials Science and Technology, 2015, 31(10), 1184.
21 Tan X R. Study on the organization and properties of Al2NbTixV2Zr series lightweight high entropy alloys. Master’s Thesis, Zhengzhou University, China, 2017 (in Chinese).
谭欣荣. Al2NbTixV2Zr系列轻质高熵合金组织和性能的研究. 硕士学位论文, 郑州大学, 2017.
22 Yurchenko N, Panina E, Salishchev G, et al. IOP Conference Series, Materials Science and Engineering, 2021, 1014, 012058.
23 Yurchenko N Y, Stepanov N D, Shaysultanov D G, et al. Materials Characterization, 2016, 121, 125.
24 Stepanov N D, Yurchenko N Y, Skibin D V, et al. Journal of Alloys and Compounds, 2015, 652, 266.
25 Yurchenko N, Stepanov N, Salishchev G, et al. Materials Science and Technology, 2017, 33(1), 17.
26 Zhang X, Ye H, Huang J C, et al. Materials, 2020, 13(1), 36.
27 Yurchenko N Y, Panina E S, Zherebtsov S V, et al. Materials Characterization, 2019, 158, 109980.
28 Panina E S, Yurchenko N Y, Tikhonovsky M A, et al. Materials Science and Engineering A, 2020, 786, 139409.
29 Youssef K M, Zaddach A J, Niu C, et al. Materials Research Letters, 2015, 3(2), 95.
30 Jia Y, Jia Y, Wu S, et al. Materials, 2019, 12, 1136.
31 Baek E J, Ahn T Y, Jung J G, et al. Journal of Alloys and Compounds, 2016, 696, 450.
32 Shao L, Zhang T, Li L, et al. Journal of Materials Engineering and Performance, 2018, 27, 6648.
33 Yang X, Chen S Y, Cotton J D, et al. Journal of metals, 2014, 66(10), 2009.
34 Maulik O, Kumar V, et al. Materials Characterization, 2015, 110, 116.
35 Du X H, Wang R, Chen C, et al. Key Engineering Materials, 2017, 727, 132.
36 Li R, Gao J C, Fan K, et al. Materials Science Forum, 2010, 650, 265.
37 Huang S D, Tang Q B, Zhao Z D, et al. Metal Forming Process, 2002, 20(5), 8(in Chinese).
黄少东, 唐全波, 赵祖德, 等. 金属成形工艺, 2002, 20(5), 8.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[12] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[13] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[14] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[15] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed