Progress on Microstructure and Mechanical Properties of Light-weight High Entropy Alloys
GUO Hui1, CAO Xiaoqing1,*, SUN Yizhou1, LIN Peng1, LIU Yaling2, LI Peiyou2
1 School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2 School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
Abstract: High entropy alloy is a new type of alloy composed of 5 kinds or more metal elements with equal atomic ratio or non-equal atomic ratio. This kind of alloy has excellent physical and chemical properties. Recently, high entropy alloys have become a research hot spot in the material world, and significant progress has been made in studying various high performance high entropy alloys. Light-weight high-entropy alloys have excellent comprehensive performance and low density, which has attracted more and more special attention. In the field of aerospace, transportation and nuclear power industry, materials with low density, high strength, good plasticity and excellent high-temperature mechanical properties are usually needed. The research of such light and high entropy alloys is particularly important. This paper summarizes the progress of the microstructure and mechanical properties of Light-weight and high entropy alloys, and lists the characteristics of two typical light high entropy alloy systems, and finally discusses their future development.
郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
GUO Hui, CAO Xiaoqing, SUN Yizhou, LIN Peng, LIU Yaling, LI Peiyou. Progress on Microstructure and Mechanical Properties of Light-weight High Entropy Alloys. Materials Reports, 2024, 38(18): 23020177-10.
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299. 2 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A, 2004, 375-377, 213. 3 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153. 4 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227. 5 Raphel A, Kumaran S, Kumar K V, et al. Materials Today:Proceedings, 2017, 4, 195. 6 Tsao T K, Yeh A C, Kuo C M, et al. Entropy, 2016, 18, 62. 7 Butler T M, Chaput K J, Dietrich J R, et al. Journal of Alloys and Compounds, 2017, 729, 1004. 8 Gorr B, Mller F, Azim M, et al. Oxidation of Metals, 2017, 88, 339. 9 Kai W, Cheng F P, Liao C Y, et al. Materials Chemistry and Physics, 2017, 210, 362. 10 An Z B, Mao S C, Yang T, et al. Science China Materials, 2022, 65(10), 2842. 11 Zhi Q, Tan X R, Xie J L, et al. Journal of Materials Engineering and Performance, 2022, 31(6), 4934. 12 Chae M J, Sharma A, Oh M C, et al. Metals and Materials International, 2021, 27, 629. 13 Klimenko D N, Yurchenko N Y, Stepanov N D, et al. Materials Today:Proceedings, 2020, 38, 1535. 14 Stepanova N D, Yurchenkoa N Y, Panina E S. , et al. Materials Letters, 2017, 188, 162. 15 Yurchenko N Y, Stepanov N D, Zherebtsov S V, et al. Materials Science and Engineering A, 2017, 704, 82. 16 Li D, Dong Y, Zhang Z Q, et al. Journal of Alloys and Compounds, 2021, 877(19), 160199. 17 Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Materials Letters, 2015, 142, 153. 18 Yao J Q. Thermal stability, phase structure, and mechanical properties of low-density refractory high-entropy alloys. Master’s Thesis, Huazhong University of Science and Technology, China, 2011 (in Chinese). 姚俊卿. 低密度难熔高熵合金的热稳定性、相结构与力学性能. 硕士学位论文, 华中科技大学, 2011. 19 Zherebtsov S, Yurchenko N, Panina E, et al. Intermetallics, 2020, 116, 106652. 20 Stepanov N D, Yurchenko N Y, Shaysultanov D G, et al. Materials Science and Technology, 2015, 31(10), 1184. 21 Tan X R. Study on the organization and properties of Al2NbTixV2Zr series lightweight high entropy alloys. Master’s Thesis, Zhengzhou University, China, 2017 (in Chinese). 谭欣荣. Al2NbTixV2Zr系列轻质高熵合金组织和性能的研究. 硕士学位论文, 郑州大学, 2017. 22 Yurchenko N, Panina E, Salishchev G, et al. IOP Conference Series, Materials Science and Engineering, 2021, 1014, 012058. 23 Yurchenko N Y, Stepanov N D, Shaysultanov D G, et al. Materials Characterization, 2016, 121, 125. 24 Stepanov N D, Yurchenko N Y, Skibin D V, et al. Journal of Alloys and Compounds, 2015, 652, 266. 25 Yurchenko N, Stepanov N, Salishchev G, et al. Materials Science and Technology, 2017, 33(1), 17. 26 Zhang X, Ye H, Huang J C, et al. Materials, 2020, 13(1), 36. 27 Yurchenko N Y, Panina E S, Zherebtsov S V, et al. Materials Characterization, 2019, 158, 109980. 28 Panina E S, Yurchenko N Y, Tikhonovsky M A, et al. Materials Science and Engineering A, 2020, 786, 139409. 29 Youssef K M, Zaddach A J, Niu C, et al. Materials Research Letters, 2015, 3(2), 95. 30 Jia Y, Jia Y, Wu S, et al. Materials, 2019, 12, 1136. 31 Baek E J, Ahn T Y, Jung J G, et al. Journal of Alloys and Compounds, 2016, 696, 450. 32 Shao L, Zhang T, Li L, et al. Journal of Materials Engineering and Performance, 2018, 27, 6648. 33 Yang X, Chen S Y, Cotton J D, et al. Journal of metals, 2014, 66(10), 2009. 34 Maulik O, Kumar V, et al. Materials Characterization, 2015, 110, 116. 35 Du X H, Wang R, Chen C, et al. Key Engineering Materials, 2017, 727, 132. 36 Li R, Gao J C, Fan K, et al. Materials Science Forum, 2010, 650, 265. 37 Huang S D, Tang Q B, Zhao Z D, et al. Metal Forming Process, 2002, 20(5), 8(in Chinese). 黄少东, 唐全波, 赵祖德, 等. 金属成形工艺, 2002, 20(5), 8.