Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23020120-6    https://doi.org/10.11896/cldb.23020120
  高分子与聚合物基复合材料 |
含铁纳米纤维电极去除水中孔雀石绿
陈一萍*, 郑朝洪, 王禹笙, 苏薇薇
泉州师范学院资源与环境学院,福建 泉州 362000
Removal of Malachite Green by Iron-containing Nanofiber Electrode
CHEN Yiping*, ZHENG Chaohong, WANG Yusheng, SU Weiwei
College of Resources and Environment in Quanzhou Normal University, Quanzhou 362000, Fujian, China
下载:  全 文 ( PDF ) ( 7526KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种典型的三苯甲烷类染料,孔雀石绿具有降解难度大、对生态环境和人类危害大等特点,因此水中孔雀石绿的治理问题不容忽视。本工作借助静电纺丝技术和液相还原法,将纳米铁颗粒物负载于高度蓬松的PVA纳米纤维,制备高性能的含铁纳米纤维,并利用其作为第三维电极构建三维电极反应体系,考察三维电极体系中孔雀石绿的去除行为。结果表明,未接通电源时含铁纳米纤维对水中孔雀石绿具有良好的吸附效果,吸附行为符合准二级动力学模型;在三维电极体系中,含铁纳米纤维先借助吸附作用对水中孔雀石绿进行富集浓缩,然后通过电解作用同时实现孔雀石绿的降解和含铁纳米纤维活性位点的再生。在预吸附-电解40 min后,水中孔雀石绿的去除率超过了95%,且反应体系呈现出较强的pH值耐受性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈一萍
郑朝洪
王禹笙
苏薇薇
关键词:  静电纺丝  含铁纳米纤维  吸附  三维电极体系  孔雀石绿    
Abstract: As a kind of typical triphenylmethane dye, malachite green is difficult to be degraded, and is harmful to ecological environment and human beings. Therefore, the removal of malachite green in water cannot be ignored. In this work, high-performance iron-containing nanofibers were prepared via loading iron nanoparticles onto highly fluffy PVA nanofibers by electrospinning and liquid-phase reduction method. Then the three-dimensional electrode system was constructed using iron-containing nanofibers as the third-dimensional electrode and the removal of malachite green in the three-dimensional electrode system was investigated. The results showed that the iron-containing nanofibers had a good adsorption effect on malachite green in water, and the adsorption behavior followed the pseudo-second-order kinetic model. In the three-dimensional electrode system, the malachite green molecules could be enriched on the surface of iron-containing nanofibers by adsorption, and then the degradation of malachite green and the regeneration of activity sites on iron-containing nanofibers were simultaneously realized by subsequent three-dimensional electrolysis. After pre-adsorption and electrolysis for 40 min, the removal rate of malachite green in water reached 95%, and the reaction system showed strong pH tolerance.
Key words:  electrospinning    iron-containing nanofiber    adsorption    three-dimensional electrode system    malachite green
发布日期:  2024-10-12
ZTFLH:  X5  
基金资助: 福建省自然科学基金面上项目(2021J01974);福建省科技计划重点项目(2019N0015);国家自然科学基金(22006091)
通讯作者:  *陈一萍,通信作者,泉州师范学院教授。2002年福州大学环境工程专业本科毕业,2005年福州大学环境工程专业硕士毕业后到泉州师范学院工作至今,2020年中国科学院城市环境研究所环境工程专业博士毕业。目前主要从事污染防治材料等方面的研究工作。发表论文20余篇,包括Journal of Hazardous Materials、Chemosphere等。chenyiping2005@qztc.edu.cn   
引用本文:    
陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
CHEN Yiping, ZHENG Chaohong, WANG Yusheng, SU Weiwei. Removal of Malachite Green by Iron-containing Nanofiber Electrode. Materials Reports, 2024, 38(18): 23020120-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020120  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23020120
1 García-Rodríguez O, Bauelos J, El-Ghenymy A, et al. Journal of Electroanalytical Chemistry, 2016, 767, 40.
2 Kanta S, Pathania D, Singh P, et al. Applied Catalysis B:Environmental, 2014, 147, 340.
3 Yu D, Pei Y, Ji Z, et al. Chemosphere, 2022, 291, 132895.
4 Li H, Yang H, Cheng J, et al. Journal of Cleaner Production, 2021, 308, 127324.
5 Islam M, Dolle C, Sadaf A, et al. Microsystems & Nanoengineering, 2022, 71, 8.
6 Huang Q, Shi X, Pinto R, et al. Environmental Science & Technology, 2008, 42, 8884.
7 Huang Y, Ma H, Wang S, et al. ACS Applied Materials & Interfaces, 2012, 4, 3054.
8 Chen Y, Yang L, Chen J, et al. Journal of Hazardous Materials, 2019, 371, 576.
9 Zhao X, Zhang Q, Chen D, et al. Macromolecules, 2010, 43, 2357.
10 Lv X, Xu J, Jiang G, et al. Chemosphere, 2011, 85, 1204.
11 Lv H, Zhao H, Cao T, et al. Journal of Molecular Catalysis A:Chemical, 2015, 400, 81.
12 Minella M, Sappa E, Hanna K, et al. RSC Advances, 2016, 6, 86752.
13 Liu Q, Zhong L, Zhao Q, et al. ACS Applied Materials & Interfaces, 2015, 7, 14573.
14 Li Y. Electrocatalytic degradation of organochlorine pesticides by novel Fe-ZSM-5 type three-dimensional particle electrode. Master’s Thesis, Lanzhou Jiaotong University, China, 2020(in Chinese).
李越煊. Fe-ZSM-5型三维粒子电极电解有机氯农药的研究. 硕士学位论文, 兰州交通大学, 2020.
15 Gong F, Wang L, Li D, et al. Chemical Engineering Journal, 2015, 267, 102.
[1] 何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
[2] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[3] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[4] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[5] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[6] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[7] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[8] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[9] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-.
[10] 彭惠靖, 张卫民, 王玉罡, 卢琪愿, 王新宇. 复合材料HAP@nZVI对Mn(Ⅱ)的吸附性能与机理[J]. 材料导报, 2024, 38(16): 23020165-8.
[11] 高正源, 白佳龙, 孙鹏飞, 安治国. 陶瓷膜在饮用水处理中的应用现状[J]. 材料导报, 2024, 38(16): 23010017-10.
[12] 周丹, 刘一鸣, 王志刚, 银建中, 徐琴琴. 液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能[J]. 材料导报, 2024, 38(16): 24040049-7.
[13] 高浩, 魏中华, 邓佳, 陈涛, 赵海利. PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化[J]. 材料导报, 2024, 38(14): 23020080-7.
[14] 李运龙, 刘忆贤, 刘苗, 韩继龙, 周理龙, 李正杰, 甄崇礼, 刘润静. 基于静电和金属络合协同作用的MIL-101(Cr)-NH2高效吸附水中单宁酸[J]. 材料导报, 2024, 38(14): 22100069-8.
[15] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed