Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 24040049-7    https://doi.org/10.11896/cldb.24040049
  无机非金属及其复合材料 |
液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能
周丹1, 刘一鸣1, 王志刚2, 银建中2, 徐琴琴2,*
1 太原科技大学化学工程与技术学院,太原 030024
2 大连理工大学化工学院,辽宁 大连 116024
Preparation and Performance of AgNPs/MoS2 Composite SERS Substrate via Liquid Phase Exfoliation
ZHOU Dan1, LIU Yiming1, WANG Zhigang2, YIN Jianzhong2, XU Qinqin2,*
1 School of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 13993KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二维纳米材料因其原子级厚度、可调的带隙以及高比表面积等特点,在表面增强拉曼散射(SERS)领域展现出巨大的应用潜力。当二维材料与金属纳米颗粒结合时,其SERS性能显著增强。本工作提出一种简便的复合基底制备方法,结合银纳米颗粒(AgNPs)优异的导电性能,良好的透光性和弯曲柔韧性,采用天然二硫化钼粉末作为原料,通过一步法实现二维材料直接液相剥离与AgNPs原位合成。通过单因素分析法确定硝酸银与二硫化钼的质量比、机械搅拌转速、超声时间的影响范围,再利用响应面分析法设计优化实验条件。当硝酸银和二硫化钼的质量比为5∶1、机械搅拌转速为1 000 r/min、超声时间为3 h时,所制备的SERS基底在检测低浓度孔雀石绿时表现出高的灵敏度和良好的线性关系,增强因子达到四个数量级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周丹
刘一鸣
王志刚
银建中
徐琴琴
关键词:  表面增强拉曼散射光谱  二硫化钼  基底  孔雀石绿    
Abstract: Two-dimensional nanomaterials have demonstrated significant application potential in the field of surface-enhanced Raman scattering (SERS) because of their atomic thickness, tunable band gap, and high specific surface area. Metal nanoparticles can be added to 2D materials to greatly improve their SERS performance. This work presents a straightforward preparation process for composite materials made of AgNPs and MoS2, combining the advantages of AgNPs’ strong conductivity, good light transmittance, and bending flexibility, the method utilizes natural molybdenum disulfide powder to achieve one-step liquid-phase exfoliation and in-situ synthesis of AgNPs. The single factor analysis method was used to determine the influence range of the mass ratio of silver nitrate to molybdenum disulfide, mechanical stirring speed, and ultrasonic duration, and then the response surface analysis method was used to design and optimize the experimental conditions. When the mass ratio of silver nitrate to molybdenum disulfide is 5∶1, the mechanical stirring speed is 1 000 r/min, and the ultrasonic duration is 3 h, the prepared SERS substrate shows high sensitivity and good linear relationship when detecting low concentrations of malachite green, the enhancement factor reaches 4 orders of magnitude.
Key words:  surface-enhanced Raman spectroscopy sensing (SERS)    molybdenum disulfide    substrate    malachite green
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TB34  
  TB333  
基金资助: 国家重点研发计划(2020YFA0710202);国家自然科学基金(U1662130);山西省基础研究计划青年项目(202203021212300);太原科技大学博士启动基金(20212064)
通讯作者:  *徐琴琴,大连理工大学化工学院副教授、硕士研究生导师。2004年大连理工大学过程装备与控制工程本科毕业,2007年大连理工大学化工过程机械专业硕士毕业,2012年大连理工大学化工过程机械专业博士毕业。目前主要从事纳米材料、石墨烯传感器等方面的研究工作。发表论文80余篇,获辽宁省自然科学学术成果二等奖2项。获中国发明专利授权10项。qinqinxu@dlut.edu.cn   
作者简介:  周丹,2021年6月在大连理工大学获得博士学位。现任太原科技大学讲师,目前主要研究领域为纳米材料、工业催化。
引用本文:    
周丹, 刘一鸣, 王志刚, 银建中, 徐琴琴. 液相剥离自组装法制备AgNPs/MoS2复合SERS基底及其性能[J]. 材料导报, 2024, 38(16): 24040049-7.
ZHOU Dan, LIU Yiming, WANG Zhigang, YIN Jianzhong, XU Qinqin. Preparation and Performance of AgNPs/MoS2 Composite SERS Substrate via Liquid Phase Exfoliation. Materials Reports, 2024, 38(16): 24040049-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24040049  或          http://www.mater-rep.com/CN/Y2024/V38/I16/24040049
1 Zhu Y Z, Zhang Y J, Li J F, et al. Chinese Journal of Applied Chemistry, 2018, 38(9), 984 (in Chinese).
朱越洲, 张月皎, 李剑锋, 等. 应用化学, 2018, 35(9), 984.
2 Jackson J B, Halas N J. The Journal of Physical Chemistry B, 2001, 105(14), 2743.
3 Xue S, Zhao L, Zhao Y Q, et al. Materials Reports, 2021, 35(18), 18001 (in Chinese).
薛沙, 赵蕾, 赵友全, 等. 材料导报, 2021, 35(18), 18001.
4 Pang Y, Wang C, Lu L, et al. Biosensors and Bioelectronics, 2019, 130, 204.
5 Ouyang L, Yao L, Zhou T, et al. Analytica Chimica Acta, 2018, 1027, 83.
6 Xu W, Mao N, Zhang J. Small, 2013, 9(8), 1206.
7 Cao Y, Cheng Y, Sun M. Applied Spectroscopy Reviews, 2023, 58(1), 1.
8 Su S, Zhang C, Yuwen L, et al. ACS Applied Materials & Interfaces, 2014, 6(21), 18735.
9 Pan Q Z, Liu W X, Meng Z D, et al. Materials Reports, 2023, 37(19), 22030259 (in Chinese).
潘权子, 刘文晓, 孟则达, 等. 材料导报, 2023, 37(19), 22030259.
10 Zhou D, Yin J. Nano, 2020, 15(10), 2050118.
11 Steinhoff A, Kim J H, Jahnke F, et al. Nano Letters, 2015, 15(10), 6841.
12 Zhang L, Jing Z, Li Z, et al. Nanomaterials, 2022, 13(1), 187.
13 Belhout S A, Baptista F R, Devereux S J, et al. Nanoscale, 2019, 11(42), 19884.
14 Zhang X, Lai Z, Tan C, et al. Angewandte Chemie International Edition, 2016, 55(31), 8816.
15 Xu Y R, Wang Y Q, Chen H M, et al. Materials Reports, 2023, 37(7), 21060278. (in Chinese).
徐艳茹, 汪燕青, 陈焕明, 等. 材料导报, 2023, 37(7), 21060278.
16 Chen J, Liu G, Zhu Y Z, et al. Journal of the American Chemical Society, 2020, 142(15), 7161.
17 Kumar P, Khosla R, Soni M, et al. Sensors and Actuators B:Chemical, 2017, 246, 477.
18 Liu N, KimP, Kim J H, et al. ACS Nano, 2014, 8(7), 6902.
19 Bang G S, Nam K W, Kim J Y, et al. ACS Applied Materials & Interfaces, 2014, 6(10), 7084.
20 Qiao W, Yan S, He X, et al. RSC Advances, 2014, 4(92), 50981.
21 Wu Y, Cui S W, Tang J, et al. Food Chemistry, 2007, 105(4), 1599.
22 Munusamy T D, Chin S Y, Khan M M R. Chemical Engineering Research and Design, 2022, 177, 513.
23 Jetani G H, Rahmani M B. Optical Materials, 2022, 124, 111974.
24 Luu Q N, Doorn J M, Berry M T, et al. Journal of Colloid and Interface Science, 2011, 356(1), 151.
25 Cen Q, He Y, Xu M, et al. Journal of Chemical Physics, 2015, 142(11), 114201.
26 Jin Y, Ma P, Liang F, et al. Analytical Methods, 2013, 5(20), 5609.
27 Xiao G N, Man S Q. Spectroscopy Letters, 2013, 46(8), 577.
28 Cheng Z Q, Shi H Q, Yu P, et al. Acta Physica Sinica, 2018, 67(19), 197302.
29 Liang P, Wang Y, Wang P, et al. Nanoscale, 2017, 9(47), 18890.
[1] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[2] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[3] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[4] 黄勇, 郭冲霄, 倪佳苗, 刘悦, 范同祥. 金属催化辅助无转移石墨烯薄膜制备技术研究进展[J]. 材料导报, 2024, 38(15): 23050126-15.
[5] 周靓, 何文远, 陈隆源, 朱红伟, 陈丽娟, 凌辉, 郑学军. Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究[J]. 材料导报, 2023, 37(15): 22020118-7.
[6] 姚红蕊, 尹旭, 王娜, 齐舵, 姜岩. 二维纳米材料在金属防腐领域的应用研究进展[J]. 材料导报, 2022, 36(10): 20080261-9.
[7] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[8] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[9] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[10] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[11] 薛秀丽,王世斌,曾超峰,李林安,王志勇. 柔性基底上金属薄膜的失效行为及界面能测试方法研究进展[J]. 材料导报, 2020, 34(1): 1050-1058.
[12] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[13] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[14] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[15] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed