Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10001-10007    https://doi.org/10.11896/cldb.20010087
  无机非金属及其复合材料 |
基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究
王金朋1, 薛志超2, 马颖3, 李洁1, 刘思丹1, 孙红1
1 沈阳建筑大学机械工程学院,沈阳 110168
2 沈阳建筑大学理学院,沈阳 110168
3 沈阳建筑大学材料科学与工程学院,沈阳 110168
First-principles Study of Catalytic Oxygen Reduction Reaction on Si Doped MoS2 Monolayer for Li-air Battery
WANG Jinpeng1, XUE Zhichao2, MA Ying3, LI Jie1, LIU Sidan1, SUN Hong1
1 School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2 School of Science, Shenyang Jianzhu University, Shenyang 110168, China
3 School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
下载:  全 文 ( PDF ) ( 4457KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 研究碱性条件下Si掺杂单层MoS2表面的氧还原反应(ORR)机理,为设计高效的双电解液锂空气电池催化剂提供理论指导。通过第一性原理计算,分析n(n=1~3)个Si原子掺杂单层MoS2表面的ORR性能。结果表明,Si掺杂单层MoS2表面有很好的稳定性,掺杂后会在禁带中引入杂质态,使其表面活性增强。与原始单层MoS2相比,Si掺杂极大增强了MoS2对O2的还原能力。在单Si原子及双Si原子掺杂的表面,H2O分子的最大解离能垒(0.85 eV、0.78 eV)表明氧还原反应可在室温下进行。在三Si原子掺杂的表面,反应自发进行而无需任何的能垒。但单Si原子掺杂对OH基团有很强的吸附能力,不利于ORR的持续进行。而随着掺杂原子数量的增加,三Si原子掺杂的表面对OH基团的吸附能会极大降低。研究表明三Si原子掺杂的MoS2会是一种新型的ORR催化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王金朋
薛志超
马颖
李洁
刘思丹
孙红
关键词:  锂空气电池  单层二硫化钼  硅掺杂  氧还原反应机理  第一性原理    
Abstract: The mechanism of oxygen reduction reaction (ORR) in alkaline solution on the surface of Si-doped MoS2 monolayer was studied to provide instructive suggestions for designing hybrid Li-air battery ORR catalysts with high performance. The catalysis performance of ORR on surface of n (n=1—3) Si doped MoS2 was determined by the first-principles calculation. The results indicated that the embedded Si atoms remained stable and fixed to the defects, the Si substitutional atoms introduced impurity state in the forbidden region and enhanced its surface activity. Si doped MoS2 greatly enhanced the reduction ability to O2, compared with the original MoS2 monolayer. Meanwhile, on the single and double Si doped MoS2, the maximum dissociation energy barrier of H2O molecule (0.85 eV, 0.75 eV) revealed that the reaction could take place at room temperature. On the triple Si atoms doped surface, the reaction would occur spontaneously without any barrier. However, single Si doped MoS2 had a strong adsorption ability to OH group, which is not conducive to the continuous ORR. With the increase of the number of doped atoms, the adsorption energy of OH group adsorbed on the triple Si doped MoS2 surface was greatly reduced. The results have shown that triple Si doped MoS2 monolayer is expected to be novel materials for ORR.
Key words:  Li-air battery    MoS2 monolayer    Si doped    oxygen reduction reaction mechanism    the first-principles
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  O485  
基金资助: 国家自然科学基金(51776131);辽宁省“兴辽英才计划”项目(XLYC1802045)
通讯作者:  sunhongwxh@sina.com   
作者简介:  王金朋,现于沈阳建筑大学机械工程学院攻读硕士学位。主要研究方向为双电解液锂空气电池性能分析及优化。
孙红,工学博士,沈阳建筑大学教授,入选教育部“新世纪优秀人才”支持计划、辽宁省“百千万人才工程”百人层次和辽宁省高校优秀人才计划。主要从事新能源领域的研究。
引用本文:    
王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
WANG Jinpeng, XUE Zhichao, MA Ying, LI Jie, LIU Sidan, SUN Hong. First-principles Study of Catalytic Oxygen Reduction Reaction on Si Doped MoS2 Monolayer for Li-air Battery. Materials Reports, 2021, 35(10): 10001-10007.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010087  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10001
1 Li L, Liu S, Manthiram A, et al.Nano Energy, 2015, 12, 852.
2 Cheng F, Chen J.Chemical Society Reviews, 2012, 419(6), 2172.
3 Chen Z, Higgins D, Yu A, et al.Energy & Environmental Science, 2011, 4(9), 3167.
4 Novoselov K S.Science, 2004, 306(5696), 666.
5 Neto A H, Guinea F, Peres N M, et al.Reviews of Modern Physics, 2009, 81(1), 109.
6 Jiao Y, Zheng Y, Mietek J, et al.Journal of the American Chemical Society,2014, 136(11), 4394.
7 Zhang X, Lu Z, Fu Z, et al.Journal of Power Sources, 2015, 276, 222.
8 Yeh M H, Leu Y A, Chiang W H, et al.Journal of Power Sources, 2018, 375, 29.
9 Zhang H, Liu X, He G, et al.Journal of Power Sources, 2015, 279, 252.
10 Ji Y, Yang M, Dong H, et al.Journal of Materials Chemistry A, 2017, 5, 1734.
11 Bai L Z, Wang Y H, Zhang Z Y, et al.Materials Reports B: Research Papers, 2017, 31(8), 12 (in Chinese).
白利忠, 王彦辉, 张增一, 等. 材料导报:研究篇, 2017, 31(8), 12.
12 Wang J Z, Jiang S W, Zhu X P.Materials Reports A: Review Papers, 2019, 33(9),2868 (in Chinese).
王晋枝, 姜淑文, 朱小鹏. 材料导报:综述篇, 2019, 33(9), 2868.
13 Fu C P, Huang H, Sun L T.Journal of Atomic and Molecular Physics, 2019, 36(3), 522 (in Chinese).
伏春平, 黄浩, 孙凌涛. 原子与分子物理学报, 2019, 36(3), 522.
14 Ma D, Ju W, Li T, et al.Applied Surface Science, 2016, 371, 180.
15 Xiao B B, Zhang P, Han L P, et al.Applied Surface Science, 2015, 354, 221.
16 Hao L, Yu J, Xu X, et al. Journal of Power Sources, 2017, 339, 68.
17 Huang H, Feng X, Du C, et al.Chemical Communications, 2015, 51(37), 7903.
18 Alan M, Eduardo R C, Miguel C.Applied Surface Science, 2018, 455, 758.
19 Miralrio A, Rangel E, Castro M.Applied Surface Science, 2019, 481, 611.
20 Zhang L, Liu T, Li T, et al.Physica E: Low-dimensional Systems and Nanostructures, 2017, 94, 47.
21 Böker T, Severin R, Müller A, et al. Physical Review B, 2001, 64(23), 235305.
22 Liu C, Dong H, Ji Y, et al.Scientific Reports, 2018, 8(1), 13292.
[1] 仲光洪, 汪丽莉, 杨稳. 电池负极材料Ti3C2M2 MXene表面修饰及Li存储能力的第一性原理计算研究[J]. 材料导报, 2021, 35(Z1): 15-20.
[2] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[3] 杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
[4] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[5] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[6] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[7] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[8] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[9] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[10] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[11] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[12] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[13] 张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
[14] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[15] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed