Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10013-10016    https://doi.org/10.11896/cldb.20010088
  无机非金属及其复合材料 |
新型稀磁半导体Mn掺LiBeP的磁电性质调控
杜颖妍, 陈婷, 贾倩, 李越, 毋志民
重庆师范大学物理与电子工程学院,光电功能材料重庆市重点实验室,重庆 401331
Magnetic and Electrical Properties Tuning of New Diluted Magnetic Semiconductor Mn-doped LiBeP
DU Yingyan, CHEN Ting, JIA Qian, LI Yue, WU Zhimin
Chongqing Key Laboratory of Photoelectric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 4274KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于密度泛函理论的第一性原理计算方法,探究了Liy(Be1-xMnx)P体系的磁电性质和重叠电荷布局。结果表明,Mn的掺入使体系产生自旋极化杂质带,体系性质受Li计量数的影响,形成了较强的共价键Mn-P键,影响着整个体系的电荷分布。当Li不足时,杂质带宽度减小,净磁矩减小,此时轨道发生了sp-d杂化,体系变为半金属性。而Li填隙时,体系半金属性消失,带隙值减小,导电能力增强,但由于杨-泰勒效应的产生,使得体系净磁矩与Li空位时相当。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜颖妍
陈婷
贾倩
李越
毋志民
关键词:  Mn掺LiBeP  态密度  能带结构  第一性原理    
Abstract: Using the first-principle density functional theory based on the full potential linearized augmented plane wave method, themagnetoeletric properites and overlapping charge distribution of new diluted magnetic semiconductor Liy(Be1-x Mnx)P were calculated and discussed in details. The results show that the doping of Mn causes the system to produce a spin-polarized impurity band. The properties of the doped system can be regulated by the stoichiometry of Li. The density of Fe 3d and P 3p states overlaps at the Fermi level, leads to p-d orbital hybridization. A strong covalent Mn-P bond was formed in the system, which affected the charge distribution of the whole system. When Li is insufficient, the material becomes half-metallic and exhibits 100% spin injection. While in the excess of Li system, the half-metallicity disappears, the band gap dec-teases, and the conductivity is enhanced. But Jahn-Teller effect leads to the net magnetic moment of the system is equal to that of Li vacancy.
Key words:  Mn-doped LiBeP    density of states    band structure    first-principles
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  O472  
  O469  
基金资助: 重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0251);重庆市研究生教改重点项目(yjg182021)
通讯作者:  zmwu@cqnu.edu.cn   
作者简介:  杜颖妍,重庆师范大学物理与电子工程学院硕士研究生,主要从事新型磁电功能材料的研究。
毋志民,重庆师范大学教授,硕士研究生导师,光电功能材料重庆市重点实验室副主任,重庆市物理学会理事,功能材料学会常务理事。主要从事新型磁电功能材料等方面的研究,主持二十余项科研项目,发表五十余篇研究论文,研究成果获重庆市自然科学二等奖2项。
引用本文:    
杜颖妍, 陈婷, 贾倩, 李越, 毋志民. 新型稀磁半导体Mn掺LiBeP的磁电性质调控[J]. 材料导报, 2021, 35(10): 10013-10016.
DU Yingyan, CHEN Ting, JIA Qian, LI Yue, WU Zhimin. Magnetic and Electrical Properties Tuning of New Diluted Magnetic Semiconductor Mn-doped LiBeP. Materials Reports, 2021, 35(10): 10013-10016.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010088  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10013
1 Dietl T, Ohno H, Matsukura F, et al. Science, 2000, 287,1019.
2 Wolf S A. Science, 2001, 294,1488.
3 Ohno H. Science, 1998, 281(5379), 951
4 Potashnik S J, Ku K C, Chun S H, et al. Applied Physics Letters, 2001, 79,1495.
5 Mašek J, Kudrnovský J, Máca F, et al.Physical Review Letters, 2007, 98(6), 067202.
6 Jin C Q,Wang X C,Liu Q Q,et al. Science China Physics Mechanics & Astronomy, 2013, 56,2337.
7 Deng Z, Zhao K, Jin C Q. Physics,2013, 42,682.
8 Deng Z, Jin C Q, Liu Q Q, et al.Nature Communications, 2011, 2, 422.
9 Wang M X, Zhang Z H, He M, et al. Journal of Superconductivity and Novel Magnetism, 2017, 30(6),1545.
10 Tao H L, Wang M X, Zhang Z H, et al. Journal of Superconductivity & Novel Magnetism, 2017, 30, 2823.
11 Deng Z, Zhao K, Gu B, et al.Physical Review B, 2013, 88,4365.
12 Cui Y, Zhu J G, Tao H L,et al. Journal of the American Ceramic Society, 2018, 102(1), 303.
13 Cui Y, Zhu J G, Tao H L,et al. Journal of Applied Physics, 2018, 124(20), 203901.
14 Kacimi S,Mehnane H,Zaoui A. Journal of Alloys and Compounds, 2014, 587(25), 451.
15 Mellouki A, Bennecer B, Kalarasse F, et al. Journal of Physics and Chemistry of Solids, 2014, 75(7),838.
16 Yin L Y,Sun M H. Chinese Science Bulletin, 2013, 58(Z1),426(in Chinese).
尹丽媛,孙民华. 科学通报,2013,58(Z1),426.
17 Segall M D, Lindan P J D, Probert M J, et al. Journal of Physics-Condensed Matter, 2002, 14(11), 2717.
18 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
19 Vanderbilt D. Physical Review B, 1990, 41(11), 7892.
20 Janotti A, Walle C G V. Physical Review B, 2007, 76(16), 165202.
21 Bottin F, Noguera C, Finocchi F. Physical Review B, 2003, 68(3),035418.
22 Jahn H A, Teller E. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1937, 161(905),220.
23 Qian K, Yin A J. Journal of Chongqing Technology and Business University (Natural Science Edition), 2018,35(1), 1(in Chinese).
钱康,尹爱军.重庆工商大学学报(自然科学版),2018,35(1),1.
24 Hu Y X. The first principle calculation on LaMnO3/SrMnO3 superlattice. Master's Thesis, Lanzhou University of Technology, China, 2013 (in Chinese).
胡玉霞. LaMnO3/SrMnO3超晶胞的第一性原理计算研究. 硕士学位论文, 兰州理工大学, 2013.
[1] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[2] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[3] 简单, 朱燮刚, 刘瑜, 宋海峰, 赖新春. U和UO2状态方程研究进展[J]. 材料导报, 2021, 35(1): 1082-1095.
[4] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[5] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[6] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[7] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[8] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[9] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[10] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[11] 张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
[12] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[13] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[14] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[15] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed