Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10013-10017    https://doi.org/10.11896/cldb.19050048
  无机非金属及其复合材料 |
非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究
赵宇鹏1, 贺勇1, 张敏1, 史俊杰2
1 内蒙古师范大学物理与电子信息学院,呼和浩特 010022
2 北京大学物理学院,北京 100871
First-principles Study on Magnetic and Optical Properties of Two-dimensional ZnS Doped with Nonmetal Elements
ZHAO Yupeng1, HE Yong1, ZHANG Min1, SHI Junjie2
1 College of Physics and Electron Information, Inner Mongolia Normal University, Hohhot 010022, China
2 School of Physics, Peking University, Beijing 100871, China
下载:  全 文 ( PDF ) ( 5328KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用自旋极化密度泛函理论的第一性原理计算方法,研究了非金属元素(B-F、Si-Cl、As-Br和I)替位掺杂对二维ZnS的能带、态密度和光学性质的影响。计算结果显示:C、N、P、As原子掺杂可以诱导出ZnS的磁性,其磁性主要来源于掺杂原子最外层未被抵消的电子所产生的自旋磁矩。进一步研究两种非金属原子掺杂单层ZnS的磁耦合发现,C2构型最为稳定,C和N掺杂的体系呈现顺磁性,而As和P掺杂的体系呈现反铁磁性。此外,非金属元素C、N、P、As的掺杂也会影响二维ZnS的光学性质,使其光吸收峰在高能区域出现蓝移,并在低能区域产生新的吸收峰,增强了二维ZnS在红外区的光吸收能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵宇鹏
贺勇
张敏
史俊杰
关键词:  二维ZnS  磁性  光学性质  第一性原理    
Abstract: The effect of substitution doping of non-metallic elements (B-F, Si-Cl, As-Br and I) on the energy band, density of states and optical properties of two-dimensional ZnS were studied by using the first-principles calculation of spin polarization density functional theory. The results show that C, N, P and As atom doping can induce magnetism, which mainly comes from the spin magnetic moment of the uncanceled electrons in the outermost layer of the doping atom. Further study on the magnetic coupling of two non-metallic atom doped single layer ZnS shows that the C2 configuration is the most stable. The systems doped with C or N exhibit paramagnetism, while As or P doped systems present antiferromagnetism. The doping of non-metallic elements C, N, P and As also affects the optical properties of two-dimensional ZnS. The blue shift of the optical absorption peak occurs in the high-energy region, and new absorption peaks were generated in the low-energy region, which enhances the absorptive capacity of two-dimensional ZnS in the infrared region.
Key words:  two-dimensional ZnS    magnetic    optical properties    first-principles
                    发布日期:  2020-04-26
ZTFLH:  O471.5  
基金资助: 国家自然科学基金(11364030;11474012);内蒙古自然科学基金(2015MS0127)
通讯作者:  张敏,教授,硕士研究生导师,2010年于内蒙古大学获得理学博士学位,主要从事低维半导体材料的电学、磁学及光学性质的第一性原理研究,主持国家自然科学基金项目和内蒙古自然科学基金项目。zhangm@imnu.edu.cn   
作者简介:  赵宇鹏,现为内蒙古师范大学物理与电子信息学院硕士研究生,主要从事二维材料磁性和光催化领域的研究。
引用本文:    
赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
ZHAO Yupeng, HE Yong, ZHANG Min, SHI Junjie. First-principles Study on Magnetic and Optical Properties of Two-dimensional ZnS Doped with Nonmetal Elements. Materials Reports, 2020, 34(10): 10013-10017.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050048  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10013
1 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696),666.
2 Huang X, Zeng Z Y, Zhang H. Chemical Society Reviews, 2013, 42(5),1934.
3 Liu H, Du Y C, Deng Y X, et al. Chemical Society Reviews, 2015, 44(9),2732.
4 Lin Y, Williams T V, Connell J W. The Journal of Physical Chemistry Letters, 2009, 1(1), 277.
5 Ashton M, Paul J, Sinnott S B, et al. Physical Review Letters, 2017, 118(10), 106101.
6 Tao L, Cinquanta E, Chiappe D, et al. Nature Nanotechnology, 2015, 10(3), 227.
7 Zhong Y, Sisto T J, Zhang B, et al. Journal of the American Chemical Society, 2017, 139(16),5644.
8 Peng Q, Han L, Wen X D, et al. RSC Advances, 2015, 5(15),11240.
9 Katayama H, Oda S, Kukimoto H. Applied Physics Letters, 1975, 27(12), 697.
10 Liu X J, Cai X, Mao J F, et al. Applied Surface Science, 2001, 183(1-2), 103.
11 Sorokina I T, Sorokin E, Mirov S, et al. Optics Letters, 2002, 27(12), 1040.
12 Luo L, Chen H, Zhang L C, et al. Analytica Chimica Acta, 2009, 635(2),183.
13 Kudo A, Sekizawa M. Chemical Communications, 2000,15,1371.
14 Zhang X J, Zhao M W, Yan S S, et al. Nanotechnology, 2008, 19(30), 305708.
15 Behera H, Mukhopadhyay G. Journal of Physics D: Applied Physics, 2014, 47(7),075302.
16 Bhargava R N, Gallagher D, Hong X, et al. Physical Review Letters, 1994, 72(3), 416.
17 Sarmazdeh M M, Mendi R T, Mirzaei M, et al. Journal of Materials Science, 2017, 52(6), 3003.
18 Wolf S A, Awschalom D D, Buhrman R A, et al. Science, 2001, 294(5546), 1488.
19 Chaurasiya R, Dixit A. Journal of Physics, 2017, 1710,11051.
20 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758.
21 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters,1996, 77(18), 3865.
22 Ferreira L G, Marques M, Teles L K. Physical Review B, 2008, 78(12),125116.
23 Shahrokhi M. Applied Surface Science, 2016, 390, 377.
24 Feng Y, Huang B J, Li S S, et al. Journal of Materials Science, 2015, 50(21), 6993.
25 Na-Phattalung S, Smith M F, Kim K, et al. Physical Review B, 2006, 73(12), 125205.
[1] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[2] 梁惠东, 郑汉杰, 杨浩, 王晨, 陈俊锋, 汪炳叔. 氮添加量对块体纳米晶NdFeB永磁材料的影响[J]. 材料导报, 2020, 34(8): 8025-8030.
[3] 王鑫, 仲崇贵, 李桦, 董正超. 超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究[J]. 材料导报, 2020, 34(4): 4068-4072.
[4] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[5] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[6] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[7] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[8] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[9] 张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
[10] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[11] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[12] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[13] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[14] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[15] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed