Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10008-10012    https://doi.org/10.11896/cldb.19040074
  无机非金属及其复合材料 |
制备时间对CIPs/Fe3O4吸波性能的影响
周影影1,2, 周万城1, 叶梦元2, 谢辉2
1 西北工业大学材料学院,西安 710072
2 西安航空学院材料工程学院,西安 710077
Effects of Preparation Time on Absorbing Property of CIPs/Fe3O4
ZHOU Yingying1,2, ZHOU Wancheng1, YE Mengyuan2, XIE Hui2
1 School of Materials, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China
下载:  全 文 ( PDF ) ( 4189KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过表面柔性氧化技术在羰基铁粉(CIPs)表面改性制备了CIPs/Fe3O4材料。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱分析(XPS)和矢量网络分析仪对改性前后的CIPs进行测试分析,研究了不同处理时间对CIPs/Fe3O4材料微观形貌、物相、元素组成和价态、电磁性能及吸波性能的影响。结果表明:随着表面氧化处理时间的延长,CIPs表面生成的Fe3O4颗粒越来越多。模拟反射率结果表明:当反应时间为90 min、材料厚度为1.8 mm时,CIPs/Fe3O4材料在测试频段内的吸收值低于-20 dB的频宽为1.7 GHz,最低吸收峰值为-29.6 dB;而原始CIPs材料在测试频段内的吸收值低于-20 dB的频宽为1.5 GHz,最低吸收峰值为-24.1 dB。这说明通过对CIPs的表面进行氧化改性处理,可以提高其吸收效率和吸收频宽。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周影影
周万城
叶梦元
谢辉
关键词:  表面柔性氧化技术  羰基铁粉  电磁性能  吸波性能    
Abstract: In this paper, CIPs/Fe3O4 composite materials with enhanced microwave absorption properties were prepared by surface flexible oxidation technology. The raw CIPs and CIPs/Fe3O4composites samples were tested and analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and vector network analyzer, respectively. The effects of different oxidation time on the microstructure, composition and chemical state of elements, electromagnetic properties and absorbing properties of CIPs/Fe3O4 composites were studied. The simulated reflectance results show that the absorption efficiency of CIPs/Fe3O4 composite is higher than the property of the raw CIPs. When the reaction time is 90 min, the minimum absorption value of CIPs/Fe3O4 composite is -29.6 dB at the thickness of 1.8 mm and the minimum absorption value of raw CIPs is -24.1 dB at the same thickness. Moreover, with -20 dB as the scale, the microwave absorbing bandwidth of the raw CIPs is 1.5 GHz and the bandwidth of CIPs/Fe3O4 composite is 1.7 GHz when the reaction time is 90 min. It shows that the absorption efficiency and microwave absorbing bandwidth of CIPs can be improved by surface oxidation technology.
Key words:  surface oxidation technology    carbonyl iron particles    electromagnetic property    microwave absorbing property
                    发布日期:  2020-04-26
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51701148);陕西省光电功能材料与器件重点实验室开放课题(2015szsj-59-1)
通讯作者:  周影影,2016年6月毕业于西北工业大学,获得材料学博士学位。目前在西北工业大学做博士后工作,同时,她是西安航空学院的副教授,主要从事磁性吸收剂材料的合成改性与表征研究。zhouyingying@xaau.edu.cn   
作者简介:  周万城,西北工业大学教授,博士研究生导师,分别于1981年、1985年和1990年在西北工业大学材料科学与工程系获得学士、硕士和博士学位。1993年8月在美国Iowa State University完成博士后研究,1999—2001年作为访问教授在美国University of Missouri-Rolla进行合作研究。获国家科技进步一等奖1项,国家技术发明二等奖1项,省部级科技成果一等奖2项,获得授权国家(或国防)发明专利50余项,在Journal of American Chemical Society等国内外重要学术刊物上发表的论文被SCI 收录300余篇。
引用本文:    
周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
ZHOU Yingying, ZHOU Wancheng, YE Mengyuan, XIE Hui. Effects of Preparation Time on Absorbing Property of CIPs/Fe3O4. Materials Reports, 2020, 34(10): 10008-10012.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040074  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10008
1 Joseph N, Varghese J, Sebastian M T. Composites Part B, 2017, 123, 271.
2 Lin C C, Tsai C T, Deng D J, et al. Computer Networks, 2017, 129, 536.
3 Sambyal P, Dhawan S K, Gairola P, et al. Current Applied Physics, 2018, 18(5), 611.
4 Zhou L, Su G X, Wang H B, et al. Journal of Alloys and Compounds, 2019, 777, 478.
5 Zhou L, Huang J L, Wang X G, et al. Journal of Alloys and Compounds, 2019, 774, 813.
6 Olad A, Shakoori S. Journal of Magnetism and Magnetic Materials, 2018, 458, 335.
7 Huang X G, Zhang J, Xiao S R, et al. Materials Letters, 2014, 124, 126.
8 Zhao X, Zhang Y L, Wang X X, et al. Journal of Materials Science: Materials in Electronics, 2016, 27(11), 11518.
9 Huang X G, Zhang J, Wang W, et al. Journal of Magnetism and Magnetic Materials, 2016, 405, 36.
10 Liu X, Qiu Y L, Ma Y T, et al. Journal of Alloys and Compounds, 2017, 721, 411.
11 Liu Y, Yu H, Drew M G B, et al. Journal of Materials Science: Mate-rials in Electronics, 2018, 29(2),1562.
12 Zhou Y Y, Xie H, Zhou W C, et al. Journal of Magnetism and Magnetic Materials, 2018, 446, 143.
13 Min D D, Zhou W C, Luo F, et al. Journal of Magnetism and Magnetic Materials, 2017, 435, 26.
14 Zhou Y Y. Preparation and properties of microwave absorbing materials with temperature-resistant resin matrix. Ph.D. Thesis, Northwestern Polytechnical University, China, 2016(in Chinese).
周影影. 耐温树脂基吸波材料的制备及性能研究. 博士学位论文,西北工业大学, 2016.
15 Cao M S, Song W L, Hou Z L, et al. Carbon, 2010, 48(3), 788.
16 Zhang X F, Dong X L, Huang H, et al. Applied Physics Letters, 2006, 89(5), 0531151.
17 Zhou Y Y, Zhou W C, Qing Y C, et al. Journal of Magnetism and Magnetic Materials, 2015, 374, 345.
18 Li R, Wang T, Tan G G, et al. Journal of Alloys and Compounds, 2014, 586, 239.
[1] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[2] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[3] 胡志德, 赵湖钧, 王大伟. 羰基铁粉对锂基磁流变脂动态流变行为的影响[J]. 材料导报, 2019, 33(Z2): 630-633.
[4] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[5] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[6] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[7] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed