Please wait a minute...
材料导报  2020, Vol. 34 Issue (2): 2093-2099    https://doi.org/10.11896/cldb.18110137
  金属与金属基复合材料 |
铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算
徐允, 张兆春, 郭海波, 谢耀平
上海大学材料科学与工程学院,上海 200444
Magnetic and Thermodynamic Properties of Indium-Lanthanides (La, Ce, Pr and Nd) Intermetallic Compounds: First-principles Calculation
XU Yun, ZHANG Zhaochun, GUO Haibo, XIE Yaoping
School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China
下载:  全 文 ( PDF ) ( 6340KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 在高燃耗率时,作为裂变产物的镧系元素(主要为La,Ce,Pr,Nd,Pm,Sm)在合金燃料内部不断积累,并且逐渐迁移至包覆层-燃料界面,与包覆层主要化学元素(Fe,Cr,Ni)发生化学反应,生成低熔点金属间化合物。控制包覆层-燃料界面化学反应的有效措施之一是将特定化学元素掺入合金燃料中,与镧系元素发生化学反应,生成稳定的、难以迁移的化合物,从而显著减少或延迟包覆层-燃料界面化学反应的发生。铟(In)由于具有与合金燃料元素相容、对包覆层金属元素呈现化学惰性以及与镧系元素能够生成金属间化合物等特性,已作为合金燃料的化学掺杂剂而被研究。本工作通过第一性原理计算,研究了铟-镧系元素(In-La)金属间化合物(InLa,CeIn3,αInPr,In3Nd)的基态性质以及在自旋-轨道耦合存在下的电子和磁性性质;此外,基于Debye-Slater模型,对InLa、CeIn3、αInPr、In3Nd在不同温度和压力下的热力学性质进行了计算。该研究可更好地表征铟结合和稳定镧系裂变产物的功能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐允
张兆春
郭海波
谢耀平
关键词:    镧系元素  磁学  热力学性质  第一性原理    
Abstract: At high burnup, fission product lanthanide accumulate is substantial and obviously contributes to fuel-cladding chemical interaction upon migration to the Fe-based cladding interface. By doping with specific elements into the fuel alloy, the lanthanide accumulates may be precipitated into stable, non-migratory, and non-reactive phases within the fuel and thus significantly reduce and/or delay the onset of fuel-cladding chemical interaction. Experimentally, indium has been selected as the fuel dopant due to several attractive properties, such as its compatibility with the fuel, chemical inertness with cladding materials and reactivity with the lanthanides. In this study, first-principles calculations were performed to investigate ground-state properties of the indium-lanthanides (La, Ce, Pr and Nd) intermetallic compounds. The electronic and magnetic properties of InLa, CeIn3, αInPr and In3Nd have been calculated in the presence of spin-orbit coupling, and anti-ferromagnetic ground state structures have been found to be the most stable phases for these compounds. In addition, the thermodynamic properties of these four compounds at given temperatures and pressures have been calculated. The study may lead to a better understanding of the function of indium of binding and stabilizing lanthanide fission products.
Key words:  indium    lanthanide    magnetic    thermodynamic properties    first-principles calculation
               出版日期:  2020-01-25      发布日期:  2020-01-03
ZTFLH:  TB30  
通讯作者:  zhangzhaochun@shu.edu.cn   
作者简介:  徐允,现为上海大学材料科学与工程学院硕士研究生。目前主要研究领域为:基于第一性原理研究铟与金属核燃料裂变产物镧系元素相互作用及其产物的物理化学性质;张兆春,上海大学材料科学与工程学院副教授。主要研究方向包括:金属和半导体纳米体系的制备与其功能化实验研究;低维碳材料结构设计及其物理化学性质研究。自2000年至今,主持、参与上海市高等学校科学技术发展基金项目和国家自然科学基金项目共计5项;发表学术研究论文60余篇,专利授权2项。
引用本文:    
徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
XU Yun, ZHANG Zhaochun, GUO Haibo, XIE Yaoping. Magnetic and Thermodynamic Properties of Indium-Lanthanides (La, Ce, Pr and Nd) Intermetallic Compounds: First-principles Calculation. Materials Reports, 2020, 34(2): 2093-2099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110137  或          http://www.mater-rep.com/CN/Y2020/V34/I2/2093
1 Bozzolo G, Mosca H O, Yacout A M, et al. Journal of Nuclear Mate-rials, 2010, 407 (3), 228.2 Karahan A. Modeling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors, Massachusetts Institute of Technology, USA, 2009.3 Mariani R D, Porter D L, O’Holleran T P, et al. Journal of Nuclear Materials, 2011, 419 (1-3), 263.4 Bozzolo G, Mosca H O, Yacout A M, et al. Computational Materials Scie-nce, 2010, 50 (2), 447.5 Kim Y S, Wiencek T, O'Hare E, et al. Journal of Nuclear Materials, 2017, 484, 297.6 Egeland G W, Mariani R D, Hartmann T, et al. Journal of Nuclear Materials, 2013, 432 (1-3), 539.7 Egeland G W, Mariani R D, Hartmann T, et al. Journal of Nuclear Materials, 2013, 440 (1-3), 178.8 Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V. Computer Physics Communications, 2011, 182 (10), 2232.9 Massalski T B, Okamoto H, Subramanian P R, et al. Binary Alloy Phase Diagrams, 2nd Edition, ASM, International, USA, 1990.10 Jain A, Ong S P, Hautier G, et al. APL Materials, 2013, 1(1), 011002.11 Hang Z W, Zhao Y H, Hou H, et al. Rare Metal Materials and Engineering, 2011, 40 (12), 2136.12 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6 (1), 15.13 Kresse G, Furthmüller J. Physical Review B-Condensed Matter and Materials Physics, 1996, 54 (16), 11169.14 Blochl P E. Physical Review B, 1994, 50 (24), 17953.15 Jepsen O, Blchl P E, Andersen O K. Physical Review B, 1994, 49 (23), 16223.16 Kresse G, Joubert D. Physical Review B, 1999, 59, 1758.17 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77 (18), 3865.18 Liu Y, Wang J, Gao Q N, et al. Journal of Central South University, 2015, 22 (5), 1585.19 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77 (18), 3865.20 Feng X K, Shi S Q, Shen J J, et al. Journal of Nuclear Materials, 2016, 479, 461.21 Koepernik K, Eschrig H. Physical Review B-Condensed Matter and Materials Physics, 1999, 59 (3), 1743.22 Eschrig H, Koepernik K, Chaplygin I. Journal of Solid State Chemistry, 2003, 176 (2), 482.23 Shafiq M, Ahmad I, Jalali-Asadabadi S. RSC Advances, 2015, 5 (49), 39416.24 Saini S M, Nautiyal T, Auluck S. Materials Chemistry and Physics, 2011, 129 (1-2), 349.25 Larson P, Walter R, Lambrecht L. Physical Review B-Condensed Matter and Materials Physics, 2007, 75 (4), 045114.26 Gamz.a M, S′lebarski A, Deniszczyk J. Journal of Physics: Condensed Matter, 2008, 20 (11), 115202.27 Nourbakhsh Z, Pourghazi A. Physica Status Solidi (c) Current Topics in Solid State Physics, 2006, 3 (9), 3292.28 Wang Y, Liu Z K, Chen L Q. Acta Materialia, 2004, 52 (9), 2665.29 Shang S L, Wang Y, Kim D, et al. Computational Materials Science, 2010, 47 (4), 1040.30 Murnaghan F D. American Journal of Mathematics, 1937, 59, 235.31 Birch F. Physical Review B, 1947, 71 (11), 809.32 Birch F. Journal of Geophysical Research: Solid Earth, 1978, 83, 1257.33 Becquart C S, Domain C. Current Opinion in Solid State and Materials Science, 2012, 16 (3), 115.34 Lawrence J M, Shapiro S M. Physical Review B, 1980, 22 (9), 4379.35 Lalic' M V, Mestnik-Filho J, Carbonari A W. Physical Review B - Condensed Matter and Materials Physics, 2002, 65 (5), 544051.36 Domain C, Becquart C S, Foct J. Physical Review B-Condensed Matter and Materials Physics, 2004, 69 (14), 144112.37 Moshopoulou E G, Ibberson R M, Sarrao J L, et al. Electrochemical and Solid-State Letters, 2006, 9 (5), 173.38 Moriarty J L, Humphreys J E, Gordon R O, et al. Acta Crystallographica, 1966, 21, 840.39 Harris I R, Raynor G V. Journal of the Less-Common Metals, 1965, 9 (1), 7.40 Ravindran P, Kjekshus A, Fjellvåg H, et al. Physical Review B-Condensed Matter and Materials Physics, 2002, 65 (6), 644451.41 Schüβler-Langeheine C, Weschke E, Ott H, et al. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 795.42 Wegner D, Bauer A. Journal of Applied Physics, 2006, 45 (3B), 1941.43 Vinet P, Rose J H, Ferrante J, et al. Journal of Physics: Condensed Matter, 1989, 1 (11), 1941.44 Huang W, Zhao B J, Zhu S F, et al. Journal of Alloys and Compounds, 2016, 688, 173.
[1] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[2] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[3] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[4] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[5] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[6] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[7] 张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
[8] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[9] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[10] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[11] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[12] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[13] 周勇, 党墨含, 孙良, 翟文彦, 董会, 高倩, 赵飞, 彭建洪. Mg13Al14和Mg17Al12中间合金的第一性原理研究[J]. 材料导报, 2019, 33(24): 4111-4116.
[14] 马容, 张兆春, 郭海波, 谢耀平. 锂氦在钨中的行为及其对钨力学和热力学性质影响的第一性原理研究[J]. 材料导报, 2019, 33(24): 4164-4169.
[15] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed