Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4111-4116    https://doi.org/10.11896/cldb.19010076
  金属及金属基复合材料 |
Mg13Al14和Mg17Al12中间合金的第一性原理研究
周勇1, 党墨含1, 孙良1, 翟文彦1, 董会1, 高倩1, 赵飞1, 彭建洪2
1 西安石油大学材料科学与工程学院,西安 710065
2 青海民族大学物理与电子信息工程学院,西宁 810007
First-principles Study of Intermediate Alloy Mg13Al14 and Mg17Al12
ZHOU Yong1, DANG Mohan1, SUN Liang1, ZHAI Wenyan1, DONG Hui1, GAO Qian1, ZHAO Fei1, PENG Jianhong2
1 School of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065
2 School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007
下载:  全 文 ( PDF ) ( 3285KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 Mg-Al合金具有密度小、刚度好、强度质量比极佳、可铸性以及延展性良好等优点,可作为一种性能优异的轻量级结构材料。Mg17Al12作为其中的中间合金,具有阻碍位错运动来强化晶界的重要作用。本工作采用第一性原理方法,系统研究了Mg13Al14和Mg17Al12两种中间合金的晶体结构、电子结构及力学性能。研究结果表明: Mg13Al14的原胞结构不具有热力学稳定性,而Mg13Al14初胞结构热力学稳定,且稳定性高于Mg17Al12;通过电子结构分析发现,Mg13Al14和Mg17Al12均具有很强的金属性,且Mg17Al12的离子性略强于Mg13Al14,因此Mg17Al12具有更高的结构稳定性;通过力学参数计算,可以得出二者的初胞均具有良好的力学稳定性,而Mg13Al14的原胞不具有力学稳定性。其中Mg13Al14表现为延性材料,Mg17Al12表现为脆性材料;Mg13Al14初胞的可塑性更好,抵抗剪切形变的能力强于Mg17Al12;Mg17Al12的刚性更高,抗塑性变形能力强于Mg13Al14;Mg13Al14和Mg17Al12均表现为弹性各向异性;对于Mg-Al合金,中间合金初胞结构的Mg13Al14的综合力学性能优于Mg17Al12,但原胞的热力学稳定性较差,与Mg17Al12相比不利于提升Mg-Al的热稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周勇
党墨含
孙良
翟文彦
董会
高倩
赵飞
彭建洪
关键词:  Mg-Al合金  第一性原理  电子结构  力学性能    
Abstract: In this paper, the crystal structure, electronic structure and mechanical properties of intermediate alloy Mg13Al14 and Mg17Al12 were studied by first-principles method. The results show that the primitive cell structure of Mg13Al14 has no thermodynamic stability, but its conventional cell structure is thermodynamically stable and its stability is higher than that of Mg17Al12; Mg13Al14 and Mg17Al12 both have strong metallic properties, Mg17Al12 has higher structural stability, Mg13Al14 has no mechanical stability; Mg13Al14 is ductile material, and Mg17Al12 is brittle material. In addition, the ability to resist shear deformation of Mg13Al14’s conventional cell structure is stronger than Mg17Al12; Mg17Al12 has higher rigidity and stronger resistance to plastic deformation than Mg13Al14; both Mg13Al14 and Mg17Al12 exhibit elastic anisotropy. It is suggested that the general mechanical properties of Mg13Al14’s conventional structure are better than that of Mg17Al12, but the thermodynamics of the primitive cell is unstable. Consequently, comparing with Mg17Al12, Mg13Al14 is not conducive to improving the thermal stability of Mg-Al alloy.
Key words:  Mg-Al alloy    first-principles    electronic structure    mechanical properties
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TG146  
基金资助: 金属材料磨损控制与成型技术国家地方联合工程研究中心开放基金资助项目(HKDNM201811);西安石油大学研究生创新与实践 能力培养立项项目(YCS17211037);西安石油大学《材料科学与工程》省级优势学科资助
作者简介:  周勇,博士、教授,硕士生导师,1988年9月至今,任职于西安石油大学,主要从事石油工程材料的研究;孙良,2017年毕业于西安交通大学,获得工学博士学位。同年在西安石油大学材料科学与工程学院工作,主要研究方向为新材料制备、材料强度预测以及第一性原理计算。
引用本文:    
周勇, 党墨含, 孙良, 翟文彦, 董会, 高倩, 赵飞, 彭建洪. Mg13Al14和Mg17Al12中间合金的第一性原理研究[J]. 材料导报, 2019, 33(24): 4111-4116.
ZHOU Yong, DANG Mohan, SUN Liang, ZHAI Wenyan, DONG Hui, GAO Qian, ZHAO Fei, PENG Jianhong. First-principles Study of Intermediate Alloy Mg13Al14 and Mg17Al12. Materials Reports, 2019, 33(24): 4111-4116.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010076  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4111
1 Suzuki A, Saddock N D, Jones J W, et al. Acta Materialia, 2005, 53(9),2823.2 Mordike B L, Ebert T. Materials Science and Engineering:A, 2001, 302(1),37.3 Geng H R, Teng X Y, Wang Y, et al. Cast aluminum and magnesium alloy, Chemical Industry Press, China,2007(in Chinese).耿浩然, 滕新营, 王 艳, 等. 铸造铝、镁合金, 化学工业出版社, 2007.4 Lou A A, Pekguleryuz M O.Journal of Materials Science, 1994, 29(20),5259.5 Luo A A. International Materials Reviews, 2004, 49(1),13.6 Xiao X L, Luo C P, Liu J W, et al. The Chinese Journal of Nonferrous Metals, 2003, 13(1),15 (in Chinese).肖晓玲, 罗承萍, 刘江文, 等. 中国有色金属学报, 2003, 13(1),15.7 Wang N, Yu W Y, Tang B Y, et al. Journal of Physics D: Applied Phy-sics, 2008, 41(19),195408.8 Kazuhisa T.Japanese Journal of Applied Physics, 1971, 10(10),1311.9 Zhuang H L, Chen M H, Emily A C.Physical Review Applied, 2016, 5(6),064021.10 Segall M D, Philip J D, Probert M J, et al.Journal of Physics: Condensed Matter, 2002, 14(11),2717.11 Hu J Q, Xie M, Chen J L, et al.Acta Physica Sinica, 2017, 66(5),270(in Chinese).胡洁琼, 谢明, 陈家林, 等. 物理学报, 2017, 66(5),270.12 Sahu B R. Materials Science and Engineering: B, 1997, 49(1),74.13 Zhang H, Shang S L, Wang Y, et al. Acta Materialia, 2010, 58(11),4012.14 Hu W C, Liu Y, Hu X W, et al.Philosophical Magazine, 2015, 95(15), 1626.15 Wang F, Sun S J, Yu B, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(1),203.16 Huang Z W, Zhao Y H, Hou H, et al. Physica B: Condensed Matter, 2012, 407(7),1075.17 Zhou D W, Liu J S, Xu S H, et al. Physica B: Condensed Matter, 2010, 405(13),2863.18 Fan K M, Yang L, Sun Q Q, et al. Acta Physica Sinica, 2013, 62(11),116201(in Chinese).范开敏, 杨莉, 孙庆强, 等. 物理学报, 2013, 62(11), 116201.19 Parlinski K, Li Z Q, Kawazoe Y. Physical Review Letters, 1997, 78(21),4063.20 Sinko G V, Smirnov N A.Journal of Physics: Condensed Matter, 2002, 14(29),6989.21 Liu Y, Hu W C, Li D J, et al.Physica Scripta, 2013, 88(4), 045302.22 Liu Y, Hu W C, Li D J, et al.Physica B Condensed Matter, 2014, 432,33.23 Li L H, Wang W L, Hu L, et al.Intermetallics, 2014, 46,211.24 Wu Z J, Zhao E J, Xiang H P, et al.Physical Review B, 2007, 76(5),054115.25 Liu Y, Hu W C, Li D J, et al.Intermetallics, 2012, 31,257.26 Hu W C, Liu Y, Li D J, et al. Physica B: Condensed Matter, 2013, 427, 85.27 Pugh S F.The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367),823.28 Frantsevich I N, Voronov F F, Bokuta S A. Elastic constants and elastic moduli of metals and insulators handbook, Naukova Dumka Publishing House, 1983.29 Mattesini M, Ahuja R, Johansson B. Physical Review B, 2003, 68(18),184108.30 Richardson R C D. Wear, 1967, 10(4),291.31 Wang J, Hou H, Zhao Y H, et al. Rare Metal Materials and Enginee-ring, 2018, 47(3), 846(in Chinese).王娟, 侯华, 赵宇宏, 等. 稀有金属材料与工程, 2018, 47(3), 846.32 Every A G.Physical Review B, 1980, 22(4), 1746.33 Newnham R E. Properties of materials: anisotropy, symmetry and structure, Oxford University Press, 2005.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[5] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[6] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[7] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[8] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[9] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[10] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[11] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[12] 张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
[13] 吴懿萍, 何臻毅, 周志纲, 熊汉青, 贾寓真, 李承波, 李国锋. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(Z2): 394-397.
[14] 陈爱华, 俞坚钢, 陈国平, 唐诤溱, 王鹏举. 合金化元素对铜基块状非晶合金性能影响的研究进展[J]. 材料导报, 2019, 33(Z2): 415-418.
[15] 杨林, 熊建坤, 余勇, 文仲波, 聂甫恒, 杨东, 王东力, 冯雨来. 大热输入对焊条电弧焊低合金钢力学性能的影响[J]. 材料导报, 2019, 33(Z2): 424-427.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed