Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4164-4169    https://doi.org/10.11896/cldb.18110055
  金属及金属基复合材料 |
锂氦在钨中的行为及其对钨力学和热力学性质影响的第一性原理研究
马容, 张兆春, 郭海波, 谢耀平
上海大学材料科学与工程学院,上海 200444
Behaviors of Lithium and Helium in Tungsten and Their Influences on Mechanical and Thermodynamic Properties of Tungsten: First-Principles Applications
MA Rong, ZHANG Zhaochun, GUO Haibo, XIE Yaoping
School of Materials Science and Engineering, Shanghai University, Shanghai 200444
下载:  全 文 ( PDF ) ( 3046KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了预测长期锂化壁处理工艺对第一壁材料——钨的影响,本工作采用第一性原理计算,探讨锂、氦杂质原子在金属钨中的行为及其对钨金属材料力学和热力学性质的影响。计算结果表明,单一锂原子在钨晶体中倾向于占据替代位置,该替代锂原子和位于间隙位置的氦或其他锂原子之间皆存在较强的正结合能,而且当多个间隙氦或锂原子聚集在替代锂原子周围时,体系仍然具有正结合能。对钨晶体含有锂或氦多原子聚集体力学性能(体弹模量、剪切模量、杨氏模量、泊松比、柯西压力)的计算结果表明,锂或氦多原子聚集体的出现将导致钨材料的力学强度降低,韧(展)性提高。采用准简谐Debye模型对含有锂或氦多原子聚集体的钨材料的吉布斯自由能、等容热容、熵等热力学性质的计算结果表明,锂或氦多原子聚集体的出现也将导致钨金属体系的热力学性质发生变化,这将对钨金属材料的温度分布、杂质浓度等产生一定的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马容
张兆春
郭海波
谢耀平
关键词:  第一性原理        力学性能  热力学性质    
Abstract: In order to evaluate the effects of Li-coated process on the working performance of first-wall material, tungsten, first-principles calculations were performed to investigate the behaviors of lithium and helium impurity atoms in tungsten and their influences on the mechanical and thermodynamic properties of tungsten. The results show that an isolated lithium atom tends to occupy a substitutional site in tungsten, and there exist strong binding energies between the substitutional Li atom and the neighboring interstitial He atoms or Li atoms. From the results obtained in the calculations of bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and Cauchy pressure, it is found that the presence of polyatomic lithium or helium aggregates gives rise to the reduction in mechanical strength and ductility improvement of tungsten. The calculated results of the thermodynamic properties on the basis of the quasi-harmonic Debye model indicates that the Gibbs free energy, heat capacity at constant volume and entropy of tungsten containing the polyatomic lithium or helium aggregates are changed in comparison with pure tungsten. The polyatomic lithium or helium aggregates could have a certain level of impact on the temperature distribution and impurity concentration etc. in tungsten.
Key words:  first-principles    lithium    helium    tungsten    mechanical properties    thermodynamic properties
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TB30  
作者简介:  马容,上海大学材料科学与工程学院材料物理与化学专业研究生。研究领域为计算材料物理化学;张兆春,上海大学材料科学与工程学院副教授。主要研究方向包括:金属和半导体纳米体系的制备与功能化实验研究;低维碳材料的结构设计及物理化学性质研究。自2000年至今,主持、参与上海市高等学校科学技术发展基金项目和国家自然科学基金项目共计5项;发表学术研究论文60余篇,专利授权2项。
引用本文:    
马容, 张兆春, 郭海波, 谢耀平. 锂氦在钨中的行为及其对钨力学和热力学性质影响的第一性原理研究[J]. 材料导报, 2019, 33(24): 4164-4169.
MA Rong, ZHANG Zhaochun, GUO Haibo, XIE Yaoping. Behaviors of Lithium and Helium in Tungsten and Their Influences on Mechanical and Thermodynamic Properties of Tungsten: First-Principles Applications. Materials Reports, 2019, 33(24): 4164-4169.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110055  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4164
1 Zhang Y. Effect of plasma wall treatment technology on the performance of the first wall. Ph. D. Thesis. University of Science and Technology of China, China, 2016(in Chinese).张勇. 等离子体壁处理技术对第一壁性能的影响. 博士学位论文, 中国科学技术大学, 2016.2 Kugel H W, Bell M G, Allain J P, et al. Journal of Nuclear Materials, 2011, 415(1), S400.3 Schmitt J C, Abrams T, Baylor L R, et al. Journal of Nuclear Materials, 2013, 438, S1096. 4 Zuo G Z, Hu J S, Li J G, et al. Journal of Nuclear Materials, 2011, 415(1), S1062.5 Mazzitelli G, Apicella M L, Ridolfini V P, et al. Fusion Engineering and Design, 2010, 85(6), 896.6 Allain J P, Ruzic D N, Hendricks M R. Journal of Nuclear Materials, 2001, 290, 33.7 Rognlien T D, Rensink M E. Journal of Nuclear Materials, 2001, 290, 312.8 Kirillov I R, Danilov I V, Sidorenkov S I, et al. Fusion Engineering and Design, 1998, 39-40(98), 669.9 Causey R, Wilson K, Venhaus T, et al. Journal of Nuclear Materials, 1999, 266-269(2), 467.10 Neff A L. Surface response of lithium coatings on high Z refractory metal under deuterium and helium ion bombardment. Master’s Thesis, Purdue University, USA, 2013.11 Setyawan W, Kurtz R J. Journal of Physics: Condensed Matter, 2014, 26(13), 135004.12 Wan C B, Yu S Y, Ju X. Journal of Nuclear Materials, 2018, 499, 539.13 Becquart C S. Physical Review Letters, 2006, 97(19), 196402.14 Li X C, Liu Y N, Yu Y, et al. Journal of Nuclear Materials, 2014, 451(1-3), 356.15 Kresse G, Hafner J. Physical Review B Condensed Matter, 1993, 48(17), 13115.16 Kresse G, Furthmüller J. Physical Review B Condensed Matter, 1996, 54(16), 11169.17 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1998, 77(18), 3865.18 Blöchl P E. Physical Review B Condensed Matter, 1994, 50(24), 17953.19 Chadi D J. Physical Review B Condensed Matter, 1977, 16(4), 5188.20 Domain C, Becquart C S, Foct J. Physical Review B, 2004, 69(14), 144112.21 Mayer B, Anton H, Bott E, et al. Intermetallics, 2003, 11(1), 23.22 Anderson O L. Journal of Physics and Chemistry of Solids, 1963, 24(7), 909.23 Krasko G L. Scripta Metallurgica Et Materialia, 1992, 28(12), 1543.24 Wu X, Kong X S, You Y W, et al. Nuclear Fusion, 2013, 53(7), 073049.25 Kolk G J V D, Veen A V, Caspers L M, et al. Journal of Nuclear Materials, 1985, 127(1), 56.26 Kolk G J V D, Veen A V, Hosson J T M D, et al. Nuclear Instruments and Methods in Physics Research, 1985, 6(3), 517.27 Thomas G J. Radiation Effects, 2006, 78(1-4), 37.28 Mattesini M, Ahuja R, Johansson B. Physical Review B, 2003, 68(18), 184108.29 Söderlind P, Eriksson O, Wills J M, et al. Physical Review B Condensed Matter, 1993, 48(9), 5844.30 Einarsdotter K, Sadigh B, Grimvall G, et al. Physical Review Letters, 1997, 79(79), 2073.31 Mattesini M, Ahuja R, Johansson B. Physical Review B, 2003, 68(18), 18410832 Pugh S F. Philosophical Magazine Series 1, 2009, 45(367), 823.33 Counts W A, Raabe D, et al. Acta Materialia, 2009, 57(12), 69.34 Kamran S, Chen K, Chen L. Physical Review B, 2008,77(9), 094109.35 Zhang X L, Luo F, Guo Z C, et al. Journal of Atomic and Molecular Physics, 2015(3), 512(in Chinese).张修路, 罗雰, 郭志成, 等. 原子与分子物理学报, 2015(3),512.36 Jiang C L, Zhang B P. Weapons Materials Science and Engineering, 2000, 23(3), 3(in Chinese).姜春兰, 张宝平. 兵器材料科学与工程, 2000, 23(3), 3.37 Huang D H, Li Q, Cao Q L, et al. Rare Metal Materials and Enginee-ring, 2013, 42(9), 1849(in Chinese).黄多辉, 李强, 曹启龙, 等. 稀有金属材料与工程, 2013, 42(9), 1849.
[1] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[2] 刘轩之,顾开选 ,翁泽钜,王凯凯,崔晨,郭嘉,王俊杰. 铝合金深冷处理研究进展[J]. 材料导报, 2020, 34(3): 3172-3177.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[5] 欧先国, 周玉山, 毛文峰, 顾晓瑜, 长世勇, 裴锋. 多孔碳添加量对溶胶凝胶-碳热还原法制备磷酸钒锂正极材料的电化学影响[J]. 材料导报, 2019, 33(Z2): 38-42.
[6] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[7] 杨学平, 王正江, 蒋超宇, 薛秀丽. 基于BP神经网络法研究锂电池荷电状态[J]. 材料导报, 2019, 33(Z2): 53-55.
[8] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[9] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[10] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[11] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[12] 杨金龙, 董长城, 骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报, 2019, 33(Z2): 360-364.
[13] 蔡祥, 乔岩欣, 许道奎, 李传强, 杨兰兰, 周慧玲. 镁锂合金强化行为研究进展[J]. 材料导报, 2019, 33(Z2): 374-379.
[14] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[15] 张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed